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A novel scheme is developed which allows for the combination of classical sampling techniques and quantum
wave packet dynamics to study both the inhomogeneous structural effects and the homogeneous dynamical
effects in condensed phases. We utilize this methodology to theoretically investigate quantum control of the
vibrational dynamics of a chromophore embedded in a condensed-phase environment. We consider control
of the vibrational dynamics on an excited electronic state of I2 that has been embedded in a low-temperature
argon matrix, to compare with the work of Apkarian, Zadoyan, Martens, and co-workers. The high
dimensionality of such systems precludes the possibility of an exact quantum treatment. To overcome this
difficulty we take a semiclassical approach using Gaussian wave packet dynamics in the weak response regime.
We compare the numerical simulation with experimental pump-probe measurements of Zadoyan and Apkarian,
and we find reasonable agreement over the short time interval within which we will attempt to control the
vibrational dynamics of the system in this work. Our calculations predict that coherent quantum control is
indeed possible in this condensed-phase system at sufficiently short times and provide a measure of how its
effectiveness falls off with time in comparison with the parallel gas-phase case. Finally, we summarize
some of the conclusions about quantum control which may be drawn from this work and our other theoretical
studies of quantum control in condensed-phase environments.

I. Introduction

Quantum control of molecular dynamics, defined as the use
of tailored light pulses to optimally drive a quantum system to
a desired final outcome, has now been realized both theoretically
and experimentally for several types of chemically interesting
systems.1-8 For the most part, these systems have been of small
dimensionality and restricted to the gas phase. (For an example
of an approximate treatment of quantum control in a larger
system see the work of Rice and Zhao.9) For these gas-phase
systems there has been a rich variety of chemically interesting
objectives of quantum control. These include selective bond
breaking,10,11 control of asymptotic translational,12-14

vibrational,15-21 rotational,22 and stereochemical internal states23,24

and electronic state populations,25,26 and the rational tuning of
branching ratios in reactions with physically or chemically
distinct products.27-31

We have recently considered control of a different sort that
is more transient in its nature.8,32-41 This control paradigm is
to determine the light field that optimally guides an evolving
quantum system to a predetermined target state at a particular
target time. Using this paradigm for quantum control we were
able to demonstrate both theoretically32-41 and experimen-
tally42,43 that control of the dynamics of an evolving quantum
system is possible and that the degree of control intimately
depends on the tailoring of the controlling light field and not
just on its intensity versus frequency,|E(ω)|2, and its intensity

versus time,|E(t)|2. Control in this case is truly coherent.
Within this paradigm for quantum control, we were able to
theoretically and experimentally demonstrate coherent control
for small gas-phase quantum systems. In this present paper,
we turn to the more challenging problem of control in the
condensed phase.
One would suspect that the ability to control the dynamics

of an evolving quantum system in the condensed phase is
hindered by two major obstacles, the first being an inhomoge-
neous effect and the second being homogeneous. In a condensed-
phase system at a nonzero temperature there are a multitude of
initial states of the system that are populated, and an optimal
field that is specially tailored to control the dynamics of any
particular initial state may be inappropriate to control the
dynamics of another initial state of the system; this is an
inhomogeneous effect. In a condensed-phase system containing
many degrees of freedom, even for a single initial condition,
the ability to control the dynamics of a subset of the system
can be hindered by the coupling to other degrees of freedom,
e.g., the transfer of energy among the degrees of freedom in
the system; this is a homogeneous effect. Previously we have
implemented a nearly classical approximation to quantum
control and studied the controllability of the dynamics of I2 in
a rare-gas supercritical fluid environment at liquid density and
room temperature.8,36,37 This work revealed that control in a
liquid density environment is limited, in that to succeed it must
be done very quickly. A drawback of studying this room
temperature supercritical liquid system is that both inhomoge-X Abstract published inAdVance ACS Abstracts,April 1, 1996.
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neous and homogeneous effects are involved simultaneously
and their effects on controllability are entangled. An easy way
to minimize the inhomogeneous effects is to consider a
crystalline solid condensed-phase system at a very low tem-
perature. In this way, the variety of initial conditions of the
system will be minimized.
Fortunately, a recent set of experiments together with

theoretical interpretation have recently been done on just such
a system: I2 embedded in solid rare-gas matrices at low
temperatures. In these experiments,44-46 I2 is excited from the
ground X state to the dissociative A state. In the gas phase, at
the photon energy considered here, the I2 would dissociate with
unit quantum yield. The dynamics of the I2 was then probed
by using a second pulse to further excite the I2 on the A state
to the higher lyingâ ion pair state, and the laser-induced
fluorescence (LIF) was collected as a function of pump-probe
delay to yield the experimental signal. Two main results of
this work are (i) the unambiguous demonstration of the caging
effect by the surrounding rare-gas solid on the dissociating I2,
i.e., the I2 does not dissociate in the condensed-phase environ-
ment as it would have in the gas phase, and (ii) the very long
coherence of the wave packet motion on the A state. Peaks
were observed in the LIF signal as long as 5 ps after the initial
excitation pulse, which demonstrates that the I2 wave packet
can be localized over this long time scale. These two important
results are further confirmed by classical simulation of the
dynamics,44-46 which was able to reasonably reproduce the
results of the experiment. This system is thus an appealing
candidate to study quantum control in the condensed phase.
Using our paradigm of quantum control described above, we

will numerically study the controllability of the wave packet
dynamics of I2 that has been embedded in solid argon. We
attempt to control a small part of the entire system, the dynamics
of the I2 molecule, while leaving the surrounding argon solid
uncontrolled. Thus, we need a methodology whereby quantum
control is only specified for a reduced dimensionality of the
composite system. We are then led to the reduced density
matrix, defined as the total density matrix for the entire system,
I2 + Arn, traced over the argon degrees of freedom. Our
objective is thus to control the reduced density matrix of the
composite system with an optimal specially tailored light field.
Since quantum control is a quantum mechanical construct, we
need to be able to solve the time-dependent Schro¨dinger
equation (TDSE) in order to determine the optimal control fields.
Since an exact solution of the TDSE is impossible for a
condensed-phase system, we wish to use a reasonable set of
approximations, allowing for as accurate a solution of the TDSE
as is practical. In previous work we have shown that semiclas-
sical propagation of wavepackets using Gaussian wave packet
(GWP) dynamics47 can lead to a practical and accurate short
time solution of the quantum control equations.39

This paper is organized as follows: in section II we present
a series of approximations that allow an efficient approximate
semiclassical solution of the TDSE for a condensed phase
system, in section III we derive equations to arrive at the optimal
fields that drive the reduced density matrix of the system to a
desired target state, in section IV we present the details of the
numerical simulation, and in section V we present our conclu-
sions.

II. Semiclassical Approach to Structure and Dynamics in
the Condensed Phase

We consider a system consisting of many degrees of freedom,
some of which are more interesting than others. There are many
systems that enable such a discrimination among their degrees

of freedom. For instance, for I2 in an argon bath, the internal
degrees of freedom of the I2 molecule can be segregated from
the rest of the system. To clarify the following discussion, we
call the more interesting part of the condensed-phase system
the primary system (the part of the system which will ultimately
be controlled), the rest of the system the bath, and the composite
of the primary system and the bath the supersystem. We label
the degrees of freedom of the primary system by a collective
coordinateQ that indicates either a single degree of freedom
or a small collection of degrees of freedom, and we label the
bath by the set of coordinatesx. The complete set of coordinates
of the supersystem will be denoted byq ≡ (Q, x). For
simplicity, we will also assume that the supersystem has two
electronic states, a ground state|g〉 and an excited state|e〉,
radiatively coupled by an external light field,ε(t), although that
can be generalized. The coupled matter-field Hamiltonian is

within the dipole approximation. HereHm is the material, field-
free Hamiltonian,

whereHsys(Q) is the primary system Hamiltonian,Hbath(x) is
the bath Hamiltonian, andVc(Q, x) is the coupling between the
bath and the primary system. Under the assumption that the
bath is not directly coupled to the light field, we have

In above equation,ωeg is the electronic transition frequency,
which is assumed to be much larger than the vibrational energy
spacings in both the ground and excited electronic state
manifolds. In eq 1,D(Q) is the transition dipole operator which
we assume is independent of the bath coordinates.
Since we are considering a dynamic process whereby the light

field in eq 1 drives the dynamics of the supersystem, the full
dynamical evolution of the supersystem under the Hamiltonian
in eq 1 must be considered. In this paper we represent the
dynamics of the supersystem in Liouville space48 whereby the
density operatorF(t) is used to describe the temporal evolution.
Since more interest usually lies in the time evolution of the
primary system, a useful construct for considering this smaller
subspace of the larger quantum system is the reduced density
matrix, FR(t), defined as

The symbol Trbath[...] denotes the trace over all the degrees of
freedom of the bath. The Liouville space formalism has the
advantages of straightforwardly treating the mixed states of the
supersystem that arise at nonzero temperature and of allowing
for a smooth transition between a hierarchy of approximations
to the dynamics that can include classical, semiclassical, and
finally exact quantum dynamics. This latter advantage of the
Liouville space formulation is exceedingly important in this
work, where we consider a condensed-phase system that
excludes the possibility of an exact quantum treatment.
In a condensed-phase system, there are two main challenges

to the evaluation of the time-dependent reduced density matrix.
The first is the description of the initial quantum density matrix
Fg(t0) in the condensed phase, i.e., the initial density matrix
containing the inhomogeneous effect of the environment, and
the second is the time propagation of the density matrix of the
supersystem. The dynamical effect of the bath on the system

H(t) ) Hm(Q, x) - D(Q) ‚ ε(t) (1)

Hm ) Hsys(Q) + Hbath(x) + Vc(Q, x) (2)

Hsys(Q) ) Hg(Q)|g〉〈g| + [He(Q) + pωeg]|e〉〈e| (3)

FR(t) ≡ Trbath[F(t)] (4)
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(i.e., homogeneous contributions, such as energy relaxation and
pure dephasing) can only be analyzed by examining the time
evolution of the reduced density matrix. This can, in principle,
be performed within either a reduced or full dynamical propaga-
tion scheme. In reduced dynamical propagation, the dynamical
effect of the bath on the system is introduced phenomenologi-
cally by a fluctuating random force and corresponding dissipa-
tion, while in full dynamical propagation the effect of the bath
is considered explicitly and microscopically through the com-
plete density matrix. In the latter case, the reduced matrix is
obtained from tracing the full density matrix of the system over
the bath degrees of freedom. In order to gain microscopic
insight into the effect of the bath on the dynamics, we will
propagate the full density matrix. This is an impossible task to
perform exactly for a condensed-phase system, and thus it is
critical to develop an approximate methodology. Unfortunately,
there are a very small set of universally applicable techniques
for solving the Liouville-Von Neumann equation. On the other
hand, a wide and varied set of tools are available for the exact
and approximate solution of the time-dependent Schro¨dinger
equation (TDSE). In order to make use of these existing
techniques, the initial density matrixF(t0) can be represented
in a way that is consistent with Schro¨dinger space wavefunction
propagation while properly representing the quantum distribution
of the supersystem at thermal equilibrium. We thus compose
the time evolved density matrix from an appropriate weighted
average over a set of initially pure Schro¨dinger states.
In the following we will outline a method for evolving the

full-density matrix of the system. This approximation has two
components, the first being an approximation to the nonzero
temperature averaging over the pure initial states of the
condensed-phase system and the second being an approximation
to the quantum dynamics of each initial pure state. Thus we
present a rational series of approximations that allow for a
tractable calculation of the reduced density matrix in a large
quantum system.
In a condensed-phase system consisting of 1023 degrees of

freedom, the composition of the density matrix of the super-
system from a Boltzmann weighted average over initial pure
states is impossible to perform exactly, as the multitude of initial
states that are populated at a non-zero temperature makes the
Boltzmann weighted averaging over these states intractable.
Therefore we will approximate the density matrix at any time
t g t0 as follows. (In order to simplify the notation, we will
abbreviate the phase space point asΓ ) (p, q) and the phase
space integration as∫dΓ ) ∫∫dp dq.) The density matrix at
time t is written as,

In eq 5, Fcl(Γ0; T′) is the classical phase space distribution
function at an effective temperatureT′ which will be specified
later. Physically, this function represents the thermal smearing
of the system. The dynamical componentFD(t; Γ0) of the
density matrix F(t), which parametrically depends on the
classical phase space sampling pointΓ0, is propagated from the
initial FD(t0; Γ0) to account for all the dynamics. Physically,
the parametersΓ0 ) (p0, q0) can be the expectation values of
momenta and coordinates in a system with the initialFD(t0).
Equation 5 formally separates the inhomogeneous (ensemble)
and the homogeneous (dynamical) contributions as represented
by Fcl andFD, respectively. Furthermore, the initialFD(t0; Γ0)
can be chosen as a quantum correction to the classical
distribution. The form of the dynamical component of the
density matrix in eq 5,FD, is flexible and depends on how the

quantum dynamics of the system is to be calculated. This allows
for a hierarchy of approximation schemes, such as exact
quantum, semiclassical, and completely classical, for the
dynamics. The nature ofFD sets the effective temperatureT′
and further defines the classical (inhomogeneous) ensemble
contribution,Fcl(Γ0). In the following paragraphs, we discuss
some limiting cases and practical approaches for choosing the
effective classical phase space distribution,Fcl, the initial
dynamical component of the density matrix,FD(t0), and ap-
propriate methods for the time evolution ofFD(t).
In the case that a direct propagation of the quantum density

matrix is possible,49,50 the dynamical component of the density
matrix FD is identical to the exact density matrix, i.e.,FD(t) )
F(t), and the effective classical distributionFcl(Γ0; T′) is a Dirac
δ function inΓ0 ) (p0, q0). This distribution is associated with
an effective temperatureT′ ) 0, since all the quantum effects
of the nonzero temperature have been taken care of in the
quantum distribution functionFD(t0) ) F(t0). Another interesting
limit is when the dynamics is calculated completely classically.
In this caseFD takes the formFD(Γ, t; Γ0) ) δ(Γ - Γt), where
Γt ) (pt, qt) is the classical trajectory of the supersystem with
the initial conditionΓ0 ) (p0, q0) at timet ) t0. Therefore the
corresponding classical distribution becomes the exact density
matrix at the initial time, which in the Wigner phase space
representation is given as

In this case, the classical sampling temperature has to be
adjusted, so that the classical distribution matches the quantum
equilibrium distribution functionFw(Γ, t0 f -∞) at the true
temperatureT. The mapping from the quantum Wigner phase
space representation to a classical phase space representation
can be carried out exactly in an ensemble of harmonic oscillators
with a single frequencyω. In this case, the exact density matrix
at the initial time in the Wigner phase space representation is
given by

wherenj is the Boson occupation number withnj ) (eâpω - 1)-1,
ω is the frequency of the oscillator, andm is its mass. Using
eq 6, we get the classical sampling temperatureTc′ via the
following relation with the true temperature51

Now, we consider an approximation to the quantum dynami-
cal evolution of the Schro¨dinger wavefunction for each phase
space ensemble (Γ0). This approximation will require thatFD-
(t0; Γ0) be in a pure state for each phase space ensemble at the
initial time t0, and consequentlyFD(t; Γ0) will then remain a
pure state. That is

for all time t g t0. As we mentioned previously, once the form
of FD(t; Γ0) is chosen, in principle, the form ofFcl(Γ0; T′) is
then determined. However, the exact evaluation ofFcl would
require the complete knowledge of the exact quantum thermal

F(t) ) ∫dΓ0 Fcl(Γ0; T′)FD(t; Γ0) (5)

Fcl(Γ0; T′) ) Fw(Γ0, t0) (6)

Fw(p,q,â) )

1
2πp(nj + 1/2)

exp[- q2

(2p/mω)(nj + 1/2)
- p2

2mpω(nj + 1/2)]
(7)

Tc′ ) pω
kB (nj + 1

2) ≡ pω
2kB

coth( pω
2kBT) (8)

FD(t; Γ0) ) |Ψ(t; Γ0)〉〈Ψ(t; Γ0)| (9)
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equilibrium density matrix, which is a very difficult problem
itself for systems of large degrees of freedom.
In the following, we propose a semiclassical approach

wherebyFcl(Γ0; T′) can be approximately constructed by an
effective classical Boltzmann distribution. This is done by
choosing the initialFD(t0) ) |Ψ(t0)〉〈Ψ(t0)| as a minimum
uncertainty coherent state, in which the degrees of freedom in
the system are uncorrelated. More explicitly, we reprsent the
pure state wavefunctionΨ at the initial time in the coordinate
space representation as a separable product of all the modes:

wherek is the index for modek, and the wavefunction for each
mode has the form

In eq 11,σqk
2 represents the coordinate variance in the wave-

function Ψk and is related to its local harmonic frequency
through the following relation:

Furthermore,Ψk is a minimum uncertainty wave packet whose
momentum spread isσpk, which is related to the coordinate
spread through the uncertainty principle;σpk

2 σqk
2 ) p/2. The

wavefunctionΨk given by eq 11 corresponds to the initial
dynamical component of the density matrix of thekth mode,
ρD
k , which can be expressed in the Wigner representation as

We now consider the effective classical distribution
Fcl(p0, q0; T′) associated with the initial dynamical component
of the density matrix for each mode. We further enforce the
constraint that each mode be associated with a single effective
temperatureT′ at which the effective classical phase space
distribution is constructed. In order to define the effective
temperatureT′ uniquely, let us consider the case of a harmonic
oscillator at temperatureT, in which the exact density matrix
at time t0 is given by eq 7. The coordinate variance inFD

k (t0)
(eq 13) is given byσqk

2 ) p/(2mωk) (cf. eq 12), while the
momentum variance isσpk

2 ) p2/(4σqk
2 ) ) pmωk/2, whereωk is

the vibrational frequency of thekthmode. Substituting eqs 7
and 13 into eq 5, we obtain the effective temperature

Note that this effective temperature is smaller thanTc′ (eq 8),
the effective classical sampling temperature by an amount that
is equal to the temperature associated with the zero-point energy.
This is a reasonable result since the initial Gaussian wave packet
associated withT′ in eq 14 has taken the zero-point energy into
account. The final formulation for the density matrix is given
by the following equation:

Here, we write both the final density matrix,F, on the left-
hand side of eq 15, and the wavefunctionΨ in the coordinate
space representation, withΨ(q,t; Γ0) being the wavefunction
at timet with initial conditions given by eqs 10 and 11 at time
t0.
The exact time evolution of the Schro¨dinger wavefunction,

Ψ(q, t; Γ0), can only be carried out for small dimensional
systems. Many approximate approaches, such as the time
dependent Hartree method,52-54 have been devised for propagat-
ing the Schro¨dinger wavefunction in larger systems. In this
paper, we approximate the temporal evolution of the Schro¨dinger
wavefunction in Heller’s Gaussian wave packet (GWP) picture
as follows:47

We have already demonstrated previously that the semi-classical
GWP approximation to the dynamics can be sufficiently accurate
to solve the control equations on short time scales.39 The
wavefunction is assumed to remain Gaussian in functional form
for all time, with the time dependence of the GWP being carried
in the set of time dependent parameters{qt, pt, At, γt}.47 The
time evolution of the full density matrix,F of eq 15, is then
obtained by combining the semiclassical GWP dynamics with
the initial classical phase space ensemble generated at the
effective temperatureT′ given in eq 14.
Note that the semiclassical GWP approximation to the system

dynamics is not essential to the approximate propagation scheme
developed in this section, since we can incorporate more
accurate quantum propagators to evolve the wavefunction. The
key result here is that we have developed a novel working
scheme which allows us to combine classical sampling tech-
niques and quantum wavefunction dynamics to study both
inhomogeneous structure effects and homogeneous dynamics
effects in condensed phases. In the next section, we will apply
the semiclassical approach developed in this section to quantum
control in condensed phases.

III. Optimal Control in the Condensed Phase:
Reduced-Density Matrix Formalism

The large dimensionality of the supersystem, aside from
posing formidable computational difficulties, also poses basic
questions with regard to quantum control. How should control
be defined? How does the bath affect control? What can be
controlled in a condensed-phase system that contains on the
order of 1023 degrees of freedom? How will control degrade
with time between the control pulses and the target time, the
time at which we want the system to be controlled? How can
we understand the degradation of control in systems with many
degrees of freedom, for example, the difference between
homogeneous and heterogeneous effects?
We take as our goal for control in a condensed-phase system

the control of the small primary system only, leaving the bath
degrees of freedom uncontrolled. In other words, the control
object is the reduced density matrix of the supersystem defined
in eq 4. The quantum control objective in this condensed-phase
system is to find the light fieldε(t) that best drives the reduced-
density matrix to a selected target state at the target timetf. For
specificity, in all examples considered in this present work, the
evolution of the reduced-density matrix on the excited state|e〉
will be controlled and the reduced-density matrix on the ground
electronic state|g〉 is left uncontrolled. In this case, the target

Ψ(q, t0; Γ0) ) ∏
k

Ψk(qk, t0; p0k, q0k) (10)

Ψk(qk, t0; p0k, q0k) )

(2πσqk
2 )-1/4 exp[-

(qk - q0k)
2

4σqk
2

+ ip0k(qk - q0k)] (11)

σqk
2 ) p[4m∂

2V(q0k)/∂qk
2]-1/2 (12)

ρD
k (pk, qk, t0; p0k, q0k) )

(2πσpk
2 σqk

2 )-1 exp[-
(pk - p0k)

2

2σpk
2

-
(qk - q0k)

2

2σqk
2 ] (13)

T′k )
pωk

2kB[coth( pωk

2kBT) - 1] (14)

F(q, q′, t) ) ∫dΓ0 Fcl(Γ0, T′)Ψ(q, t; Γ0)Ψ*(q′, t; Γ0) (15)

Ψ(q,t; Γ0) ) exp{(i/p)[(q - qt)
TAt(q - qt) + pt(q - qt) +

γt]} (16)

7876 J. Phys. Chem., Vol. 100, No. 19, 1996 Che et al.

+ +

+ +



operator has the following form:

The objective is to maximize the target yield at the target time
tf in the reduced space, with the target yield given by the
following:

Here Trsys[...] denotes the trace over the degrees of freedom of
the primary system, andFe

R(t) is the projection of the reduced-
density matrix on the electronic excited state|e〉.
In the weak response regime, the density operatorFe

R is
expanded in a perturbation series about the weak external field
ε(t), keeping only the lowest nonvanishing term,

Here hc stands for the Hermitian conjugate of the first term;
Fe
0 can be termed as the reduced bare density matrix since it is
physically obtained from the density matrix created by a pair
of separated delta (in time) pulses, and it is defined as

The reduced-density matrix written in eq 19 is what is created
by the fieldE(t) within first-order time-dependent perturbation
theory. We also assume that the supersystem is initially
prepared in a steady state (equilibrium, for example) on the
electronic ground surface, i.e.,F(t0) ) Fg(t0)|g〉〈g|, with Fg(t0)
) Fg(-∞). All the subscripts in the above formulas denote the
electronic state. The quantitiesGuV andDuV,u′V′ are the elements
of the total Green function and dipole operator, with the
subscripts being labels such thatu, V ) eor g denotes the matrix
element with respect to electronic state.34,55 In deriving eq 19,
we have invoked the rotating wave approximation (RWA),

HereE(t) is a complex, slowly varying field that is related to
the completely real fieldε(t) through the above equation. We
determine the optimal field variationally subject to only a single
constraint, this being that the total incident energy of the electric
field in the time interval,t0 e τ e tf, be fixed. This variational
procedure leads to the following equation for the optimal control
field E(t),10,33

In the above,Ms
R(τ,τ′) is termed the reduced material

response function and is defined as

with

The eigenvector corresponding to the largest eigenvalueλ is
the globally optimal field in the weak response regime. A very
similar integral equation for the control field has been derived

previously when we had considered control of the full density
matrix.33 The control equations for the full density matrix and
the reduced density matrix both have the same integral equation
form, the only difference being that the kernel for control of
the reduced-density matrix is the reduced material response
functionMs

R(τ,τ′).
In the following, we will apply the semiclassical approach

developed in the last section to evaluate both the reduced kernel,
Me

R(t2,t1) in eq 24, and the second-order reduced density
matrix, Fe

R(t) in eq 19. The key component of these two
quantities is the reduced bare density matrixFe

0 in eq 20.
We now turn to the reduced bare density matrixFe

0(t2,t1) in
eq 20. In the semiclassical picture (cf. eq 15), we may represent
the reduced bare density matrix as

Here,FD
0(t2,t1;Γ0) is the reduced bare dynamical component of

the density matrix, which depends only on the system degrees
of freedom and defined as (t0 f -∞)

Ψg(t0; Γ0), defined in the last section, is the initial wavefunction
of the supersystem (system plus bath) on the ground electron
state.
The final formulas for the reduced density matrixFe

R (eq 19)
and the reduced control response functionMe

R (eq 24) in the
semiclassical picture are then (cf. eq 5) given by

In these equations,MD
R and FD

R are directly obtained by
substituting eq 25 into eq 24 and eqs 25 and 26 into eq 19,
respectively,

Equations 26-30 contain the main results of this section.
Together with the semiclassical approach presented in the last
section, these results provide a complete numerical procedure
for evaluating the reduced density matrix, the reduced control
response function, and the optimal control field.
As we have shown, the key quantity for the approximate

temporal evolution of the reduced density matrix is the reduced
bare dynamical component of the density matrix,FD

0 in eq 26.
We now present explicit coordinate and Wigner phase space
representations of this quantity. In the coordinate representation,
FD
0 is given by (cf. eq 26)

The corresponding Wigner representation is then obtained via
the Wigner transformation:

Fe
0(t2,t1) ) ∫dΓ0 Fcl(Γ0;T′)FD

0(t2,t1;Γ0) (25)

FD
0(t2,t1;Γ0) )

Trbath[(i/p)
2Gee(t2)Dee,egGeg(t1)Deg,gg|Ψg(t0;Γ0)〉〈Ψg(t0;Γ0)|]

(26)

Fe
R(t) ) ∫ dΓ0 Fcl(Γ0;T′)FD

R(t,Γ0) (27)

Me
R(t2,t1) ) ∫ dΓ0 Fcl(Γ0; T′)MD

R(t2,t1;Γ0) (28)

FD
R(t,Γ0) ) ∫t0t ∫t0t dτ2 dτ1 E*(τ2)E(τ1)FD

0(t - τ2, τ2 - τ1; Γ0)

(29)

MD
R(t2,t1) ) Trsys[ÂeFD

0(t2,t1;Γ0)] (30)

FD
0(Q,Q′,t2,t1;Γ0) )

∫dx Ψe
0(Q, x, t2 + t1; Γ0)[Ψe

0(Q′, x, t2; Γ0)]* (31)

Â) Âe|e〉〈e| (17)

A(tf) ) Trsys[ÂFR(tf)] ) Trsys[ÂeFe
R(tf)] (18)

Fe
R(t) ) (i/p)2∫t0tdτ2∫t0τ2dτ1 E*(τ2)E(τ1)Fe

0(t - τ2, τ2 - τ1) +

hc (19)

Fe
0(t2,t1) )

(i/p)2 Trbath[Gee(t2)Dee,ggGeg(t1)Deg,ggFg(-∞)] (20)

ε(t) ) E(t)e-iωegt + E*( t)eiωegt (21)

∫t0tfdτ′ Ms
R(τ, τ′)E(τ′) ) λE(τ) (22)

Ms
R(τ,τ′) ) [Me

R(τ′,τ)]* ≡ Me
R(tf - τ,τ - τ′), τ g τ′ (23)

Me
R(t2, t1) ) Trsys[ÂeFe

0(t2, t1)] (24)
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Here,N is the number of degrees of freedom in the supersystem.
Note that after taking the trace over all bath modesx (i.e., the
integration in eq 31), the above system density matrix can no
longer be represented as a pure state. This is generally true in
condensed-phase systems. Usually, the multidimensional in-
tegration over the bath modesx is an intractable task. However,
in the GWP picture, since the wavepacketΨe

0 is a Gaussian
function in btoh the few primary system modesQ and the
greater number of bath modesx, an analytical evaluation of
the multidimensional Gaussian integration over all the bath
modesx is possible. The reduced control response function
can then be evaluated in the system coordinate representation
via

or by the phase space representation via

In next section, we will carry out a numerical simulation of
a model system, I2 in a low-temperature argon matrix.

IV. Control of I 2 in Ar: Simulation

A. Simulation Details. We now consider the condensed-
phase model of I2 in solid argon used in this work. Since the
unit cell of the argon crystal is face centered cubic, we put 500
argon atoms44,46,56-60 in a box with periodic boundary condi-
tions. The system is allowed to equilibrate at 15 K and then
the I2 molecule is substituted for two adjacent argon atoms. The
interaction potential between any two argon atoms and between
any argon and iodine atom is modeled by a pairwise Leonard-
Jones potential

The potential parameters used in this work are tabulated in Table
1.44,46,56-60 The potential for the I2 excited A state is modeled
by the following Morse potential:

with the Morse potential parameters De, â, and Re tabulated in
Table 1. The potential for the I2 X state is modeled by an RKR
potential, which is tabulated elsewhere.41

In Figure 1 we show a schematic of the I2 potential energy
surfaces used in the calculations. The ground state is theX(1Σ+)
state and the excited state is theA(3Π1u) state. The lower arrow
in Figure 1 indicates an electronic transition in the Frank-
Condon region from the X to A state. As indicated by Figure
1, the gas-phaseX f A transition at the photon energy shown
is purely dissociative. This is niot the case when I2 is embedded
in the argon matrix, due to the caging of the I2 by the
surrounding argon atoms.44-46 The probe state is theâ state
which, due to efficient solvent-induced electronic conversion,

relaxes to the D′ state. It is the D′ state that fluoresces, leading
to the LIF signal.44,45 In the condensed phase, these ion-pair
states of I2 are observed experimentally to be lowered in energy
due to solvation. The lowering of the iodineâ state reaches a
limiting value of 4200 cm-1 for large I2-Arn clusters (n g
40).61-64 In argon matrices, the iodine D′ state is lowered by
∼2900 cm-1 65 and is thus shown in Figure 1 as lowered by
2900 cm-1 from that of the gas phase along with theâ state.
We now find the set of effective temperatures for the

supersystem, which is at a temperature of 15 K. The ground-
state vibrational frequency of molecular iodine is 214 cm-1;
therefore the effective temperatureT′ as defined by eq 14 is 3
× 10-7 K. For this initial calculation, we take the approximation
of using the Debye frequency of the Ar matrix of 60 cm-1 as
the single frequency of all the Ar atoms in the ground state;
this sets the effective temperatureT′ at 2 K. Both of these
effective temperatures are extremely small, and thus we can
make the approximation that only a single initial configuration
is needed, this being the configuration that is consistent with
zero temperature; i.e., we only propagate a single pure state.
We now consider the exact flavor of GWP propagation that

is to be used in the calculation (cf. see eq 16). We write the
expansion of the potential energy function for the field-free
HamiltonianHm in eq 2 as

where all derivatives are evaluated at the point (Qt, xt). Here
we omit the cross terms which couple the degrees of freedom,
i.e., [Q- Qt]∑k[∂2V/(∂Q∂xk)][xk - xk,t]. Within this approxima-
tion, the Schro¨dinger wave packet for the supersystem given in
eq 16 remains in the following factorized form for all time:

FD
0(P,Q, t2, t1; Γ0) ) (2πp)N∫-∞

∞
dse-iPs/pFD

0(Q + s/2,Q -

s/2, t2, t1; Γ0) (32)

Me
R(t2,t1) )

∫dΓ0 Fcl(Γ0; T′)[∫∫dQ dQ′ A(Q′,Q)FD
0(Q,Q′, t2, t1; Γ0)]

(33)

Me
R(t2,t1) )

∫dΓ0 Fcl(Γ0; T′)[∫∫dP dQ A(P,Q)FW
0 (P,Q, t2, t1; Γ0)]

(34)

VL-J(r) ) 4ε((σ/r)12 - (σ/r)6) (35)

VA(R) ) De(1- e-â(R-Re))2 (36)

Figure 1. Schematic of the relevant I2 potential energy surfaces, with
the ion pairâ and D′ states adjusted downward in energy by 2900
cm-1 to reflect the solvation by the Ar matrix. The vertical arrow from
the ground X state to the excited A state shows the Frank-Condon
transition, which is clearly unbound in the gas phase. The two vertical
arrows from the A state to theâ state indicate the two resonance
windows that are opened in the pump-probe experiment. The
internuclear distancesR are expressed in picometers.

TABLE 1: Potential Parameters

potential parameters values

De(A state) 1840 cm-1

re(A state) 310 pm
â(A state) 2.147× 10-2 pm-1

εAr-Ar 83.26 cm-1

σAr-Ar 340.5 pm
εAr-I 130.24 cm-1

σAr-I 361.7 pm

V(Q, x) ) V0(Qt, xt) +
∂V

∂Q
[Q- Qt] + ∑

k

∂V

∂xk
[xk - xk,t] +

1

2

∂
2V

∂
2Q
[Q- Qt]

2 +
1

2
∑
k

∂
2V

∂
2xk

[xk - xk,t]
2 (37)
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The cross terms in the Taylor expansion are purposely neglected
in order to enable the wave packet to be written in this factorized
form, which both is much easier to propagate and enables the
multidimensional integration needed to calculate the reduced
material response function in eq 33 to be written as a simple
product of single dimensional integrations. Although the neglect
of the cross terms in the Taylor expansion of the potential is an
approximation that was made for computational expediency, we
believe that such an approximation is reasonable for the system
of interest. The equations of motion for the phase space centers
of the wave packet for the supersystem, (qt, pt), follow the fully
coupled classical Hamilton equations. In other words, neglect
of the correlation between the degrees of freedom in the wave
packet does not mean that the guiding classical trajectories of
the phase space centers of the wave packet are uncoupled. Since
the second derivatives of the potential [evaluated at the point
(Qt, xt)] are time-dependent, the width parameters for each wave
packet in eq 38 vary with time.

B. Results

To test our potentials and semiclassical quantum dynamics,
before proceeding to a numerical study of quantum control on
this system, we first consider a comparison of our semi-classical
quantum dynamics simulation to the experimental pump-probe
results obtained by Zadoyan and Apkarian.44-46 We simulate
the collected laser-induced fluorescence (LIF) signal that is
obtained from their time-resolved pump-probe experiment
using the classical Franck approximation66

whereIT(Ufe, t) is defined as

andUfe is defined asUfe ) (Vf - Ve)/p, with Vf andVe being
the final probe state and excited-state potential energy surfaces,
respectively. HereΩT is the carrier frequency of the probe field,
µef(R) is the transition dipole between the excited and final probe
states, with R being theI2 internuclear distance, andFe(t) is the
system excited electronic state density matrix. In the absence
of global information about the final probe state potentials
energy surface in the condensed phase, we further assume that
only the resonance windows contribute to the collected LIF
signal. The resonance windows are roughly estimated by
lowering the gas-phase ion-pair potential energy surface by 2900
cm-1, as mentioned above.61 Corresponding to the experimental
conditions of Zadoyan and Apkarian,44-46 we take the carrier
wavelengths of the pump and probe fields to be 705 and 352.5
nm, respectively. With these assumptions, the carrier frequency
of the probe pulse opens two resonance windows, one atR )
320 pm and the other atR) 480 pm. These two probe windows
are indicated in Figure 1 by the upper two vertical arrows that
are drawn between the A state and theâ state. Since these two
windows are far apart, the value of the transition dipole moment
may be different for each window. We estimate the dependence
of the â r A transition dipole on internuclear I2 distance by
the following empirical formula for the Df X transition
obtained from gas-phase experimental data67

Here the internuclear distanceR is given in Å andµef is given
in debyes. As expected, the transition dipole for the valence
to ion pair transition is smaller at larger internuclear distanceR
due to the difficulty of charge transfer. Although these data
are for the transition Df X, rather than for theâ r A transition
considered in this work, and the data are for the gas phase rather
than the condensed phase, lacking any other information above
the coordinate dependence of the dipole transition moment we
will use the above equation in this work. Based on this, we
take the ratio of the transition dipole between the inner and
outer windows to beµin/µout≈ 2. We take both the pump field
and probe fields to be 106 fs intensity full width at half-height
transform limited Gaussian pulses, yielding the value of 150 fs
for the cross correlation that was measured under the experi-
mental conditions of Zadoyan and Apkarian.44-46 In Figure 2
we show the comparison of the simulated and experimental LIF
signals as a function of delay time between the peak of the pump
and probe pulses, up to a time delay of 500 fs. The dashed
line is the experimental data and the solid line is the calculated
LIF signal. The simulated and measured signals agree quite
well up to this delay time. Degradation of accuracy in the
calculated LIF signal at later times is to be expected, since the
accuracy of GWP dynamics decreases as a function of time,
because the underlying wave packets are forced to remain
Gaussian, while real wave packets lose their simple shape in
an anharmonic potential. Indeed the agreement between the
experimental and simulated signal falls off after 500 fs. Thus
we will try to control the dynamics of the system on a time
scale that is less than 400 fs, where the agreement between the
experiment and calculation is still quite good.
The control objective on the A state of I2 chosen in this work

is a cannon, i.e., a minimum uncertainty wave packet that has
a positive value of momentum, meaning that the iodine atoms
are moving away from each other. The functional form of this
target in the Wigner representation is34

with (wPPwQQ - wPQ
2 )1/2 ) p/2 and with the phase space center

of the target distribution given by (Qh , Ph).
For the first case considered, we chose the cannon target

parameters asQ ) 380 pm,Ph is chosen such that the kinetic
energy is 2420 cm-1, ωQQ ) p/(2mω), ωPP ) mωp/2, andωPQ

) 0, withω ) 250 cm-1. The solid line in Figure 3 shows the

Ψ(q,t) ) ψQ(Q,t)∏
k

ψk(xk,t) (38)

S(td) ≈ ∫-∞

∞
dt Tr[|µef(R)|2IT(Ufe,t)Fe(t + td)] (39)

IT(Ufe, t) ) 2 ReE*T(t)∫0∞ dt′ ei(Ufe-ΩT)t′ET(t + t′) (40)

Figure 2. Collected LIF signal as a function of delay time between
the centers of the pump and probe pulses for the experimental conditions
of Zadoyan and Apkarian. The pump wavelength is 705 nm and probe
wavelength is 352.5 nm. The dashed line is the experimental data and
the solid line is the simulated signal.

µef )
62.2

R2
1

1+ (R- 4.1)2
(41)

AW(P,Q) ) 1
πp

exp(- 2

p2
[wQQ(P- Ph)2 + wPP(Q- Qh )2 -

2wPQ(P- Ph)(Q- Qh )]) (42)
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Wigner transform of the computed globally weak response
optimal field for this cannon target. Note that, for clarity, we
used a window function in the plotting of the Wigner transform
which reduces the interference normally present in the standard
Wigner transform.34,68,69 The globally optimal weak response
field is a short pulse with an overall positive linear chirp, as
expected from previous calculations.34 Note that the time axis
is labeled by∆t, which measures time from the temporal center
of the globally optimal field.
We now calculate how well this globally optimal field has

done with respect to reaching the desired objective. We term
this measure the achievement and define the achievement as

HereFe
R(tf) is the field-initiated reduced density matrix created

on the A state by the control field, which is given within first
order time-dependent perturbation theory by eq 19. The
achievement is designed to range between zero (no control) and
unity (perfect control). The globally optimal field for the
condensed-phase cannon target shown in Figure 3 leads to an
achievement value ofR ) 0.89. Calculations for such targets
in the gas phase typically lead to values of the achievement on
the order of 0.90-0.95, indicating that the ability to control
the dynamics is somewhat hindered by the condensed-phase
environment. This decrease in controllability in condensed-
phase environments has been observed previously in our other
theoretical calculations,8,36,37 and even in a single oscillator
bath,70 and will be further discussed below.
Thus far the simulations have shown that there is partial

controllability of the reduced density matrix in the condensed-
phase system. We now turn to another more subtle question:
is the control described above truly a coherent phenomena, in
the sense that the control cannot be entirely explained just as a
result of the frequency spectrum (intensity versus frequency)
or just as a result of the intensity versus time of the pulse? In
other words, must one include a higher order of description like
“how does the frequency of the pulse vary with time” in order
to explain its effect? In previous work on gas-phase I2, we were
able to answer this question in a positive way using the
following argument. Take the time-reversal of the globally
optimal field, shown as the dashed line in Figure 3, find the
wave packet that is created by this time-reversed field, and
compare this wave packet to the wave packet that is created by
the globally optimal field. Since the time-reversed field and
the original globally optimal field have identical frequency (i.e.,
power) spectra,|E(ω)|2, and very similar intensity versus time,
|E(t)|2, as can be seen from inspection of Figure 3 (with the
knowledge that|E(t)|2 is the projection of such a Wigner

transform onto the time axis and similarly for|E(ω)|2 on the
frequency axis), if the control were just a function of|E(ω)|2
and|E(t)|2, the globally optimal field pulse and its time reversal
should produce close to identical results on the wave packet.
We now apply this test of coherent control for the cannon target
in the condensed phase. In Figure 4, the solid line shows the
on-diagonal reduced density matrix (the reduced density matrix
equivalent of the pure state|Ψ(R)|2, i.e., the probability density
distribution for the I2 internuclear distance irregardless of Ar
atomic positions) that is created with the globally optimal cannon
field and the dashed line that which is created by the time-
reversal of the globally optimal cannon field. As indicated in
Figure 4, the distribution created by the optimal field is much
more focused than that created by the time-reversal of the
globally optimal field. The achievement for the time-reversed
globally optimal field in the condensed phase isR ) 0.71, to
be contrasted with the achievement for the globally optimal field,
R ) 0.89. The larger focusing and achievement for the globally
optimal field than that for its time-reversal indicates that|E(t)|2
and |E(ω)|2 cannot explain the control and that higher order
coherent effects must be involved in reaching the target
objective. We can approximately quantify this by defining the
following “sophistication index”,

whereRoptimal is the achievement for the globally optimal field
andRtime-reVersed is the achievement for the time-reverse of the
globally optimal field. ê is a measure of the sophistication of
the field tailoring included in the control. The parameterê
ranges from zero, if there is no sophistication as measured by
the difference in achievement if the optimal field and its time
reversal (for example, if the globally optimal control pulse is a
transform limited pulse), to unity if a globally optimal field
yields an achievement of unity while its time-reversal leads to
an achievement of zero. A nonzero value ofê indicates that
the sophistication of the light pulse is playing a role in reaching
the target objective. The value ofê for the cannon target in
the condensed phase isê ) 0.18, indicating that there is a
substantial component of sophistication involved in the control
field, in that it and its time-reversal provide significantly
different results as shown in Figure 4.
We now more completely investigate how the condensed-

phase environment effects both the achievement,R, and the
sophistication index,ê. To do this we choose targets at
successively larger I2 internuclear distances, where the effect
of the argon bath on the quantum dynamics becomes progres-
sively more pronounced. We find it useful to choose targets
for this study in the following way: (i) run classical trajectories
on the composite supersystem, (ii) pick a value ofQh for the
coordinate space center of the target, (iii) choose the conjugate

Figure 3. Wigner, representation of the globally optimal control field
for the condensed-phase cannon target, solid line, and its time-reversal,
dashed line.∆t is measured with respect to the temporal center of the
pulses.

R(tf) ) ( Trsys[ÂFe
R(tf)]

Tr[Â] Tr[Fe(tf)])
1/2

(43)

Figure 4. On-diagonal reduced density matrix created with the globally
optimal field, solid line, and created with a time-reversed globally
optimal field, dashed line. These give the probability distribution for
the I2 internuclear distance, independent of the Ar atoms.

ê ≡ Roptimal- Rtime-reVersed (44)
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value of the momentum along this trajectory as the value of
the momentum center of the target,Ph, and (iv) set the width of
the minimum uncertainty target to be the same valueωQQ )
p/(2mω) with ω ) 250 cm-1 for all internuclear distances. By
choosing a series of targets in this way, we are assured that
each target is achievable, since these targets have approximately
the same expectation of the energy as that of the I2 vibrational
degree of freedom at any particular target internuclear position.
To further demonstrate how the condensed-phase environment
effects the controllability, we will compare the achievements
and sophistication indices calculated for the condensed-phase
system to their values in the corresponding gas-phase system.
We also choose targets for the corresponding gas-phase system
as outlined above, but using a gas-phase classical trajectory.
This means that, for any given internuclear distance, the target
for the gas phase and condensed phase will have the same width
and the same coordinate space center but a different value for
the momentum center. In Figure 5a, the solid circles show the
achievement as a function of internuclear distance for the
condensed phase, while the open circles show the achievement
for the corresponding gas-phase system. It is evident that the
achievement values are universally lower for the condensed-
phase system than for the corresponding gas-phase system and
that the achievement values for the condensed-phase system
decrease as a function of increasing internuclear distance (and
thus of time between control pulse and target), while the
achievement values for the corresponding gas-phase system stay
relatively constant as the internuclear distance of the target
increases. In Figure 5b we show the achievement values as a
function of∆t, the time between the peak of the optimal field
and the target time. The open circles are the achievement values
for the gas-phase system, and the solid circles are the achieve-
ment values for the condensed-phase system. These results
demonstrate that the negative effect of the condensed-phase
system on the controllability becomes more pronounced as the
time and distance separating the initial controlling pulse and
the ultimate target increase and the controlled I2 chromophore

interacts for a longer time and over a longer distance with the
condensed-phase environment.
Now we consider the effect of the condensed-phase environ-

ment on the sophistication indexú. In Figure 6a we showú as
a function of internuclear distance for the condensed phase, solid
circles, and for the gas phase, open circles. As indicated in
Figure 6a, the value ofú is universally lower in the condensed-
phase system than in the corresponding gas-phase system. Also,
the values for this parameter in general decrease as a function
of internuclear distance for the condensed-phase system (and
thus of time), while they monotonically increase in the gas-
phase system. In Figure 6b we show theú values as a function
of ∆t. The open circles are theú values for the gas-phase system
and the solid circles are theú values for the condensed-phase
system. These results demonstrate that higher order coherence
of the globally optimal field becomes less important in
condensed-phase systems and that we have less ability as a
function of time to control the reduced system by more
sophisticated pulse tailoring techniques.

V. Conclusion

The present work has supported four major themes. The first
is that a reasonable control objective in condensed phases is
the reduced density matrix. The second is the development of
a novel way to combine classical sampling techniques and
quantum wave packet dynamics to study both inhomogeneous
structure effects and homogeneous dynamic effects in condensed
phases. The third is that semi-classical Gaussian wave packet
(GWP) techniques coupled with approximate, nearly classical,
nonzero temperature averaging procedures can lead to a tractable
solution of the control equations in large quantum systems on
short time scales. The fourth is that, although perfect coherent
control is elusive, some degree of quantum control is still
possible in a cold condensed phase quantum system on short
time scales and that, on yet shorter time scales, more sophis-
ticated pulse tailoring such as controlling the pulse chirp can
be helpful.

Figure 5. (a) The achievement,R, as a function of internuclear distance
for the condensed-phase system, solid circles, and for the corresponding
gas-phase system, open circles. (b) The achievement,R, as a function
of ∆t, the time between the peak of the optimal field and the target
time, for the condensed-phase system, solid circles, and the gas-phase
system, open circles.

Figure 6. (a) The light field sophistication index,ú, as a function of
internuclear distance for the condensed-phase system, solid circles, and
for the corresponding gas-phase system, open circles. (b) The
sophistication index,ú, as a function of∆t, the time between the peak
of the optimal field and the target time, for the condensed-phase system,
solid circles, and the gas-phase system, open circles.
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It is not possible to control all 1023 degrees of freedom in a
condensed phase quantum system. If, as is usually the case,
there is a small subset of the composite system that one desires
to control, the methodology we have presented here can be used
for controlling this small subsystem. We reformulated quantum
control in the weak response regime to control the reduced
density matrix of the system. We have shown that the
subsequent control equations for the reduced density matrix have
a similar form to the control equations for the complete density
matrix33 and have presented a numerical algorithm for finding
the optimal control fields once one knows the time-evolution
of the system under the field-free Hamiltonian.
The solution of the multidimensional time-dependent

Schrödinger equation (TDSE) must be used as input in order
to determine the control fields for the reduced density matrix.
In a condensed-phase system this input is impossible to compute
exactly since, beyond a few dimensions, the multidimensional
TDSE is impossible to solve exactly. Here we have employed
an approximate solution scheme that seems to work, at least on
the short time scale, that involves solving the TDSE with GWP
dynamics. This approximation allows for a computationally
tractable scheme for determining control fields on a short time
scale.39

Numerically we have demonstrated that coherent quantum
control is indeed possible in a cold, solid, condensed-phase
system. We have shown that controllability, as expected, is
degraded by the condensed-phase environment. These results
are in parallel to work that we have done previously on I2 that
was immersed in a room temperature dense rare gas fluid8,36,37

and to work on a molecule coupled to a one-dimensional bath.70

In the work done on the liquid density system, it was found
that coherent control is only possible at quite short times in the
liquid density system. Here, we have found that sophisticated
pulse tailoring can be useful in a cold solid-phase quantum
system, more useful than in room temperature liquid density
fluid, but not as useful as in the corresponding gas-phase system.
One major drawback to the work presented here is that we

were forced to consider quantum control only on short time
scales because the accuracy of our dynamical approximation
scheme, i.e., GWP dynamics, is only reliable to about 400 fs in
this system, since the GWP vibrational wave packet of the
evolving I2 is forced to remain Gaussian for all time. This
limitation can be ameliorated by using the time-dependent
Hartree (TDH) approximation, where the I2 system vibrational
wave packet is forced to remain factorized for all time but still
retains the flexibility of allowing a full numerical grid calculation
for the solution of the effective TDSE for each degree of
freedom, so that the I2 vibrational wave packet would not be
forced to remain Gaussian. We have already shown in two
dimensions that the TDH approximation can be quite accurate
for the solution of the quantum control equations,70 and it would
be instructive to apply it to this condensed-phase case.
A drawback to the standard semi-classical GWP scheme for

propagating the wavefunction is that it does not allow for the
calculation of quantum control in the strong response regime,
since it does not allow for the solution of a coupled two surface
Hamiltonian, because the GWP is not allowed to bifurcate and
thus be created on two potential energy surfaces simultaneously.
Again, a way around this difficulty is to invoke the TDH
approximation and treat the I2 vibrational coordinate with a
numerical grid.
While the application of quantum control to condensed-phase

systems is still in a nascent stage, some patterns have already
emerged from the work reported here combined with our earlier
studies,8,36,37,39,70which can be considered as tentative conclu-

sions to be further tested: (i) control can be achieved at short
enough times between the controlling light field and target time
but is less effective for the liquid and solid states than for the
corresponding gas-phase cases and generally declines in ef-
fectiveness with increasing time and increasing distance of wave
packet propagation, (ii) the average photon energy is, in general,
greater for the same target than for the gas phase, to make up
for the loss of energy to other degrees of freedom, and (iii) the
sophistication of the optimal light fields is, in general, less than
in the gas phase and declines further with increasing time and
distance of wave packet propagation, as targets are set further
away along a trajectory from the original atomic positions at
the time of application of the control light field.
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