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A novel scheme is developed which allows for the combination of classical sampling techniques and quantum
wave packet dynamics to study both the inhomogeneous structural effects and the homogeneous dynamical
effects in condensed phases. We utilize this methodology to theoretically investigate quantum control of the
vibrational dynamics of a chromophore embedded in a condensed-phase environment. We consider control
of the vibrational dynamics on an excited electronic state tfdt has been embedded in a low-temperature
argon matrix, to compare with the work of Apkarian, Zadoyan, Martens, and co-workers. The high
dimensionality of such systems precludes the possibility of an exact quantum treatment. To overcome this
difficulty we take a semiclassical approach using Gaussian wave packet dynamics in the weak response regime.
We compare the numerical simulation with experimental pupmpbe measurements of Zadoyan and Apkarian,

and we find reasonable agreement over the short time interval within which we will attempt to control the
vibrational dynamics of the system in this work. Our calculations predict that coherent quantum control is
indeed possible in this condensed-phase system at sufficiently short times and provide a measure of how its
effectiveness falls off with time in comparison with the parallel gas-phase case. Finally, we summarize
some of the conclusions about quantum control which may be drawn from this work and our other theoretical
studies of quantum control in condensed-phase environments.

I. Introduction versus time,|E(t)|2. Control in this case is truly coherent.
Within this paradigm for quantum control, we were able to
theoretically and experimentally demonstrate coherent control
for small gas-phase quantum systems. In this present paper,

Quantum control of molecular dynamics, defined as the use
of tailored light pulses to optimally drive a quantum system to
a desired final outcome, has now been realized both theoretically ; .

: - . -~ “we turn to the more challenging problem of control in the
and experimentally for several types of chemically interesting
systems: 8 For the most part, these systems have been of small condensed phase. - .
dimensionality and restricted to the gas phase. (For an example ©One would suspect that the ability to control the dynamics
of an approximate treatment of quantum control in a larger Of an evolving quantum system in the condensed phase is
system see the work of Rice and ZHoFor these gas-phase hindered by two major obstaclles, the first being an inhomoge-
systems there has been a rich variety of chemically interesting "eous effect and the second being homogeneous. In a condensed-
objectives of quantum control. These include selective bond Phase system at a nonzero temperature there are a multitude of
breakingl®!! control of asymptotic translation&; 4 initial states of the system that are populated, and an optimal
vibrational!>-2 rotational? and stereochemical internal st&te4 field that is specially tailored to control the dynamics of any
and electronic state populatioff2® and the rational tuning of ~ particular initial state may be inappropriate to control the
branching ratios in reactions with physically or chemically dynamics of another initial state of the system; this is an
distinct productg’—31 inhomogeneous effect. In a condensed-phase system containing

We have recently considered control of a different sort that many degrees of freedom, even for a single initial condition,
is more transient in its natufé2 41 This control paradigm is  the ability to control the dynamics of a subset of the system
to determine the light field that optimally guides an evolving can be hindered by the coupling to other degrees of freedom,
quantum system to a predetermined target state at a particula€.g., the transfer of energy among the degrees of freedom in
target time. Using this paradigm for quantum control we were the system; this is a homogeneous effect. Previously we have
able to demonstrate both theoretic&iy*! and experimen- implemented a nearly classical approximation to quantum
tally*243that control of the dynamics of an evolving quantum control and studied the controllability of the dynamics in
system is possible and that the degree of control intimately a rare-gas supercritical fluid environment at liquid density and
depends on the tailoring of the controlling light field and not room temperatur&36:37 This work revealed that control in a

just on its intensity versus frequend(w)|4, and its intensity liquid density environment is limited, in that to succeed it must
be done very quickly. A drawback of studying this room
® Abstract published ilAdvance ACS Abstractdpril 1, 1996. temperature supercritical liquid system is that both inhomoge-
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neous and homogeneous effects are involved simultaneouslyof freedom. For instance, fog In an argon bath, the internal
and their effects on controllability are entangled. An easy way degrees of freedom of the inolecule can be segregated from
to minimize the inhomogeneous effects is to consider a the rest of the system. To clarify the following discussion, we
crystalline solid condensed-phase system at a very low tem-call the more interesting part of the condensed-phase system
perature. In this way, the variety of initial conditions of the the primary system (the part of the system which will ultimately
system will be minimized. be controlled), the rest of the system the bath, and the composite
Fortunately, a recent set of experiments together with of the primary system and the bath the supersystem. We label
theoretical interpretation have recently been done on just suchthe degrees of freedom of the primary system by a collective
a system: 4 embedded in solid rare-gas matrices at low coordinateQ that indicates either a single degree of freedom
temperatures. In these experimetts'é I, is excited from the or a small collection of degrees of freedom, and we label the
ground X state to the dissociative A state. In the gas phase, atbath by the set of coordinat&s The complete set of coordinates
the photon energy considered here, theduld dissociate with of the supersystem will be denoted ly = (Q, x). For
unit quantum yield. The dynamics of thgwas then probed  simplicity, we will also assume that the supersystem has two
by using a second pulse to further excite thern the A state electronic states, a ground stggéland an excited statgel]
to the higher lyingg ion pair state, and the laser-induced radiatively coupled by an external light fielelt), although that
fluorescence (LIF) was collected as a function of pumppobe can be generalized. The coupled matter-field Hamiltonian is
delay to yield the experimental signal. Two main results of
this work are (i) the unambiguous demonstration of the caging H(t) = H,(Q. X) — D(Q) - (1) (1)
effect by the surrounding rare-gas solid on the dissociating | o . o . o
i.e., the b does not dissociate in the condensed-phase environ-Within the dipole approximation. Hetén is the material, field-
ment as it would have in the gas phase, and (ii) the very long frée Hamiltonian,
coherence of the wave packet motion on the A state. Peaks _
were observed in the LIF signal as long as 5 ps after the initial Hin = Hyyd Q) + Hoal) + Vi(Q. %) @
excitation pulse, which demonstrates that thevave packet
can be localized over this long time scale. These two important
results are further confirmed by classical simulation of the
dynamics**~46 which was able to reasonably reproduce the
results of the experiment. This system is thus an appealing
candidate to study quantum control in the condensed phase. HgydQ) = Hy(Q)I19g| + [H(Q) + hae e  (3)
Using our paradigm of quantum control described above, we
will numerically study the controllability of the wave packet
dynamics of 4 that has been embedded in solid argon. We In above equationweg is the electronic transition frequency,
attempt to control a small part of the entire system, the dynamics Which is assumed to be much larger than the vibrational energy
of the L molecule, while leaving the surrounding argon solid spacings in both the ground and excited electronic state
uncontrolled. Thus, we need a methodology whereby quantummanifolds. In eq 1D(Q) is the transition dipole operator which
control is only specified for a reduced dimensionality of the We assume is independent of the bath coordinates.
composite system. We are then led to the reduced density ~Since we are considering a dynamic process whereby the light
matrix, defined as the total density matrix for the entire system, field in eq 1 drives the dynamics of the supersystem, the full
I, + Ar,, traced over the argon degrees of freedom. Our dynamical evolution of the supersystem under the Hamiltonian
objective is thus to control the reduced density matrix of the in €q 1 must be considered. In this paper we represent the
composite system with an optimal specially tailored light field. dynamics of the supersystem in Liouville sp&oshereby the
Since quantum control is a quantum mechanical construct, we density operatop(t) is used to describe the temporal evolution.
need to be able to solve the time-dependent Sthger Since more interest usually lies in the time evolution of the
equation (TDSE) in order to determine the optimal control fields. Primary system, a useful construct for considering this smaller
Since an exact solution of the TDSE is impossible for a subspace of the larger quantum system is the reduced density
condensed-phase system, we wish to use a reasonable set datrix, pR(t), defined as
approximations, allowing for as accurate a solution of the TDSE R
as is practical. In previous work we have shown that semiclas- p (1) = Trpaufp(t)] (4)
sical propagation of wavepackets using Gaussian wave packet

(GWP) dynamic¥ can lead to a practical and accurate short The Symbol Tiaf...] denotes the trace over all the degrees of
time solution of the quantum control equatics. freedom of the bath. The Liouville space formalism has the

t advantages of straightforwardly treating the mixed states of the

a series of approximations that allow an efficient approximate supersystem that grise at nonzero temperature and OT aIIo_Wing
semiclassical solution of the TDSE for a condensed phasefor a smooth transition between a hierarchy of approximations

system, in section Il we derive equations to arrive at the optimal © the dynamics that can include classical, semiclassical, and
fields that drive the reduced density matrix of the system to a finally €xact quantum dynamics. This latter advantage of the

desired target state, in section IV we present the details of the Liouville space formulation is exceedingly important in this
numerical simulation, and in section V we present our conclu- WOk, where we consider a condensed-phase system that
sions. excludes the possibility of an exact quantum treatment.

In a condensed-phase system, there are two main challenges
to the evaluation of the time-dependent reduced density matrix.
The first is the description of the initial quantum density matrix
py(to) in the condensed phase, i.e., the initial density matrix

We consider a system consisting of many degrees of freedom,containing the inhomogeneous effect of the environment, and
some of which are more interesting than others. There are manythe second is the time propagation of the density matrix of the
systems that enable such a discrimination among their degreesupersystem. The dynamical effect of the bath on the system

whereHsydQ) is the primary system Hamiltoniatpam(x) is

the bath Hamiltonian, and.(Q, x) is the coupling between the
bath and the primary system. Under the assumption that the
bath is not directly coupled to the light field, we have

This paper is organized as follows: in section Il we presen

Il. Semiclassical Approach to Structure and Dynamics in
the Condensed Phase



Semiclassical Dynamics and Quantum Control J. Phys. Chem., Vol. 100, No. 19, 1998875

(i.e., homogeneous contributions, such as energy relaxation andquantum dynamics of the system is to be calculated. This allows
pure dephasing) can only be analyzed by examining the timefor a hierarchy of approximation schemes, such as exact
evolution of the reduced density matrix. This can, in principle, quantum, semiclassical, and completely classical, for the
be performed within either a reduced or full dynamical propaga- dynamics. The nature gfp sets the effective temperatufé
tion scheme. In reduced dynamical propagation, the dynamicaland further defines the classical (inhomogeneous) ensemble
effect of the bath on the system is introduced phenomenologi- contribution, p(Lo). In the following paragraphs, we discuss
cally by a fluctuating random force and corresponding dissipa- some limiting cases and practical approaches for choosing the
tion, while in full dynamical propagation the effect of the bath effective classical phase space distributigr, the initial
is considered explicitly and microscopically through the com- dynamical component of the density matrips(to), and ap-
plete density matrix. In the latter case, the reduced matrix is propriate methods for the time evolution @(t).
obtained from tracing the full density matrix of the system over  In the case that a direct propagation of the quantum density
the bath degrees of freedom. In order to gain microscopic matrix is possiblg?*°the dynamical component of the density
insight into the effect of the bath on the dynamics, we will matrix pp is identical to the exact density matrix, i.@p(t) =
propagate the full density matrix. This is an impossible task to p(t), and the effective classical distributipn(I'y; T') is a Dirac
perform exactly for a condensed-phase system, and thus it isé function inTo = (po, qo). This distribution is associated with
critical to develop an approximate methodology. Unfortunately, an effective temperatur€ = 0, since all the quantum effects
there are a very small set of universally applicable techniques of the nonzero temperature have been taken care of in the
for solving the Liouville-Von Neumann equation. On the other quantum distribution functiopp(to) = p(to). Another interesting
hand, a wide and varied set of tools are available for the exactlimit is when the dynamics is calculated completely classically.
and approximate solution of the time-dependent Sdinger In this casepp takes the formpp(T, t; To) = o( — Iy, where
equation (TDSE). In order to make use of these existing I't = (pi, Q) is the classical trajectory of the supersystem with
techniques, the initial density matri(to) can be represented the initial conditionI'o = (po, qo) at timet = to. Therefore the
in a way that is consistent with Scliioger space wavefunction  corresponding classical distribution becomes the exact density
propagation while properly representing the quantum distribution matrix at the initial time, which in the Wigner phase space
of the supersystem at thermal equilibrium. We thus compose representation is given as
the time evolved density matrix from an appropriate weighted
average over a set of initially pure S¢hinger states. paTor T) = pu (L, to) (6)
In the following we will outline a method for evolving the
full-density matrix of the system. This approximation has two In this case, the classical sampling temperature has to be
components, the first being an approximation to the nonzero adjusted, so that the classical distribution matches the quantum
temperature averaging over the pure initial states of the equilibrium distribution functionpw(I, to — —) at the true
condensed-phase system and the second being an approximatiotemperaturél. The mapping from the quantum Wigner phase
to the quantum dynamics of each initial pure state. Thus we space representation to a classical phase space representation
present a rational series of approximations that allow for a can be carried out exactly in an ensemble of harmonic oscillators
tractable calculation of the reduced density matrix in a large with a single frequency. In this case, the exact density matrix
quantum system. at the initial time in the Wigner phase space representation is
In a condensed-phase system consisting éf tlégrees of given by
freedom, the composition of the density matrix of the super-
system from a Boltzmann weighted average over initial pure Pu(P.A:B) =
states is impossible to perform exactly, as the multitude of initial Ol2 p2
states that are populated at a non-zero temperature makes theZnh(ﬁ +1/2) €x (ChImo)(n + 1/2)  2mha(n + 1/2)
Boltzmann weighted averaging over these states intractable.
Therefore we will approximate the density matrix at any time (7)
t = tp as follows. (In order to simplify the notation, we will
abbreviate the phase space poinfTas (p, g) and the phase
space integration agdI' = //dp dg.) The density matrix at
time t is written as,

wheren is the Boson occupation number wiit= (et — 1)71,
w is the frequency of the oscillator, amdis its mass. Using
eq 6, we get the classical sampling temperafliyevia the
following relation with the true temperatitfe

p(t) = fdo po(To; T)po(t To) 5) T @( +1)_hw i Fio ) @)

c Tkl 2] T 2k SO\ 2KkaT
In eq 5, pc(Fo; T') is the classical phase space distribution

function at an effective temperatuTéWhiCh will be SpeCiﬁed Now, we consider an approximation to the guantum dynami_
later. PhySica"y, this fUnCtion represents the thermal Smearing cal evolution of the Scﬁnﬁnger wavefunction for each phase
of the system. The dynamical componesi(t; I'o) of the space ensembld’§). This approximation will require thatp-

density matrix p(t), which parametrically depends on the (t; I'y) be in a pure state for each phase space ensemble at the
classical phase space sampling pdigtis propagated fromthe jnitial time to, and consequentlyp(t; To) will then remain a
initial pp(to; I'o) to account for all the dynamics. Physically, pure state. That is

the parameterFy, = (po, o) can be the expectation values of

momenta and coordinates in a system with the injtis(to). pp(t; Tp) = [W(t; To)MW(t; Ty)| 9)
Equation 5 formally separates the inhomogeneous (ensemble)

and the homogeneous (dynamical) contributions as represented

by pe and pp, respectively. Furthermore, the initigah(to; T'o) for all timet = t,. As we mentioned previously, once the form
can be chosen as a quantum correction to the classicalof pp(t; To) is chosen, in principle, the form gf.(Io; T') is
distribution. The form of the dynamical component of the then determined. However, the exact evaluatiop®ivould
density matrix in eq 5pp, is flexible and depends on how the require the complete knowledge of the exact quantum thermal
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equilibrium density matrix, which is a very difficult problem Vg — ) . *( o -
itself for systems of large degrees of freedom. P@.4.1 de‘O Pl TYW(@, & L) ¥(q', & To) (15)

In the following, we propose a semiclassical approach Here, we write both the final density matrix, on the left-
whereby pc(To; T') can be approximately constructed by an pang side of eq 15, and the wavefunctihin the coordinate
effective classical Boltzmann distribution. This is done by space representation, witH(q,t; T'o) being the wavefunction
choosing the initialpp(to) = |W(to)I¥(to)| as a minimum 4t timet with initial conditions given by egs 10 and 11 at time
uncertainty coherent state, in which the degrees of freedom iny,

the system are uncorrelated. More explicitly, we reprsent the  The exact time evolution of the Sciioger wavefunction,
pure state wavefunctiol’ at the initial time in the coordinate  (q, t; Ty), can only be carried out for small dimensional
space representation as a separable product of all the mOde%ystems. Many approximate approaches, such as the time
dependent Hartree meth&t > have been devised for propagat-
W(q, ty; o) = I_llpk(qu to; Pow Yol (10) ing the Schrdinger wavefunction in larger systems. In this
k paper, we approximate the temporal evolution of the Stihger
wavefunction in Heller's Gaussian wave packet (GWP) picture

wherek is the index for modé, and the wavefunction for each ~ as follows?

mode has the form ) T
W(a.t; L) = exp[(i/A)[(d — a) Ald — a) + pa —ay) +
W (G to; Pow dod = rd} (16)
_ 2

_M + ipgdd — Y| (12) We have already demonstrated previously that the semi-classical

2 GWP approximation to the dynamics can be sufficiently accurate
to solve the control equations on short time scélesThe
In eq 11,0§k represents the coordinate variance in the wave- wavefunction is assumed to remain Gaussian in functional form
function W, and is related to its local harmonic frequency for all time, with the time dependence of the GWP being carried

(ijék)—lm ex
[¢[3

through the following relation: in the set of time dependent parametgug py, Ay, yit.4” The
time evolution of the full density matrixp of eq 15, is then
Oﬁkz h[4m32\/(q0k)/3qi]*1/2 (12) obtained by combining the semiclassical GWP dynamics with

the initial classical phase space ensemble generated at the
effective temperaturg@’ given in eq 14.

Note that the semiclassical GWP approximation to the system
dynamics is not essential to the approximate propagation scheme
developed in this section, since we can incorporate more
accurate quantum propagators to evolve the wavefunction. The
key result here is that we have developed a novel working
scheme which allows us to combine classical sampling tech-
nigues and quantum wavefunction dynamics to study both

FurthermoreWy is a minimum uncertainty wave packet whose
momentum spread ispy, which is related to the coordinate
spread through the uncertainty principteo?, = h/2. The
wavefunction Wy given by eq 11 corresponds to the initial
dynamical component of the density matrix of tkiéa mode,
Q'E,, which can be expressed in the Wigner representation as

k . -
00(Pw G 1) Pow Goid = inhomogeneous structure effects and homogeneous dynamics
S (P — Po)® (G — G0 effects in condensed phases. In the next section, we will apply
(2ﬂ0pk0f,k) exg — 2 - 2 (13) the semiclassical approach developed in this section to quantum
207 200 control in condensed phases.
We now consider the effective classical distribution i1, Optimal Control in the Condensed Phase:

pci(Po, Go; T') associated with the initial dynamical component Reduced-Density Matrix Formalism
of the density matrix for each mode. We further enforce the
constraint that each mode be associated with a single effective
temperatureT’ at which the effective classical phase space
distribution is constructed. In order to define the effective
temperaturd” uniquely, let us consider the case of a harmonic
oscillator at temperatur€, in which the exact density matrix
at timetp is given by eq 7. The coordinate varianceplg(to)

(eq 13) is given byoék = Al/(2mwy) (cf. eq 12), while the
momentum variance isy, = h%(4o%) = hmwi/2, wherewy is

the vibrational frequency of thkth mode. Substituting eqgs 7

The large dimensionality of the supersystem, aside from
posing formidable computational difficulties, also poses basic
questions with regard to quantum control. How should control
be defined? How does the bath affect control? What can be
controlled in a condensed-phase system that contains on the
order of 1@® degrees of freedom? How will control degrade
with time between the control pulses and the target time, the
time at which we want the system to be controlled? How can
we understand the degradation of control in systems with many
c X : degrees of freedom, for example, the difference between
and 13 into eq 5, we obtain the effective temperature homogeneous and heterogeneous effects?

A A We take as our goal for control in a condensed-phase system
T = N cot nox) _ 1 (14) the control of the small primary system only, leaving the bath
K 2kg 2k T degrees of freedom uncontrolled. In other words, the control
object is the reduced density matrix of the supersystem defined
Note that this effective temperature is smaller tfi@n(eq 8), in eq 4. The quantum control objective in this condensed-phase
the effective classical sampling temperature by an amount thatsystem is to find the light field(t) that best drives the reduced-
is equal to the temperature associated with the zero-point energydensity matrix to a selected target state at the targetttirfer
This is a reasonable result since the initial Gaussian wave packespecificity, in all examples considered in this present work, the
associated witfl" in eq 14 has taken the zero-point energy into evolution of the reduced-density matrix on the excited Stife
account. The final formulation for the density matrix is given will be controlled and the reduced-density matrix on the ground
by the following equation: electronic stategClis left uncontrolled. In this case, the target
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operator has the following form:

A=AeTe] 17)

The objective is to maximize the target yield at the target time
tr in the reduced space, with the target yield given by the
following:

At) = Trg, JAoR(t)] = Try, JAPS()] (18)

Here Tg{...] denotes the trace over the degrees of freedom of
the primary system, an,oﬁ(t) is the projection of the reduced-
density matrix on the electronic excited st&el

In the weak response regime, the density operpﬁoris

expanded in a perturbation series about the weak external field

€(t), keeping only the lowest nonvanishing term,
. t T
pe(t) = (i)’ [ dr, [ dr; EX@)E()pelt — 77, — 7)) +
hc (19)

Here hc stands for the Hermitian conjugate of the first term;

J. Phys. Chem., Vol. 100, No. 19, 1998877

previously when we had considered control of the full density
matrix32 The control equations for the full density matrix and

the reduced density matrix both have the same integral equation
form, the only difference being that the kernel for control of
the reduced-density matrix is the reduced material response
function MX(z,7').

In the following, we will apply the semiclassical approach
developed in the last section to evaluate both the reduced kernel,
Ms(tz,tl) in eq 24, and the second-order reduced density
matrix, p?(t) in eq 19. The key component of these two
quantities is the reduced bare density ma,trﬁx’n eq 20.

We now turn to the reduced bare density mapi,,t,) in
eq 20. Inthe semiclassical picture (cf. eq 15), we may represent
the reduced bare density matrix as

paltoty) = f dly oo (T T)op(ttyiTo)

Here, p3(t,t;;T,) is the reduced bare dynamical component of
the density matrix, which depends only on the system degrees
of freedom and defined ag(— —)

(25)

o0 can be termed as the reduced bare density matrix since it isPo(tzt:lo) =

physically obtained from the density matrix created by a pair
of separated delta (in time) pulses, and it is defined as

pg(tZ’tl) =
(i/’r’l)2 Trbatr[Gee(tz)DeeggGeg(tl)Deggng(_m)] (20)

The reduced-density matrix written in eq 19 is what is created
by the field E(t) within first-order time-dependent perturbation
theory. We also assume that the supersystem is initially
prepared in a steady state (equilibrium, for example) on the
electronic ground surface, i.e(to)) = pg(to)|gg|, with pg(to)
= pg(—). All the subscripts in the above formulas denote the
electronic state. The quantitieg, andD, s are the elements
of the total Green function and dipole operator, with the
subscripts being labels such that = e or g denotes the matrix
element with respect to electronic st&é&> In deriving eq 19,
we have invoked the rotating wave approximation (RWA),
e(t) = E(t)e™*d + EX(1)ed (21)
Here E(t) is a complex, slowly varying field that is related to
the completely real field(t) through the above equation. We
determine the optimal field variationally subject to only a single
constraint, this being that the total incident energy of the electric
field in the time intervaltg < t < t;, be fixed. This variational
procedure leads to the following equation for the optimal control
field E(t),10:33
j:dr' MR(z, 7)E(¢) = AE(7) (22)

In the above, MSR(r,r') is termed the reduced material

response function and is defined as

M@, ) =M@ D =Mt — 17— 7), T>7 (23)
with
MZ (tt) = TrsysIAepg(tZ' t)] (24)

The eigenvector corresponding to the largest eigenvalise
the globally optimal field in the weak response regime. A very
similar integral equation for the control field has been derived

TrbatrI( i /h)zGee(tz) DeeegGeg(tl) Deggg' ng(to;ro) myg(to;ro) |]
(26)

Wy(to; I'o), defined in the last section, is the initial wavefunction
of the supersystem (system plus bath) on the ground electron
state.

The final formulas for the reduced density matp§<(eq 19)
and the reduced control response funcME\ (eq 24) in the
semiclassical picture are then (cf. eq 5) given by

ps(t) = f dly po(To T)op(t.To)

ME(toty) = f dly p(To: T)MB(ttyiTp)

(27)

(28)
In these equationsM} and pp are directly obtained by
substituting eq 25 into eq 24 and egs 25 and 26 into eq 19,
respectively,

po(tTo) = ft: ft: dr, dry EX(1)E(r))pp(t = T2 7, — 74 T)

(29)

MB(taty) = TroJAsp(tti;To)] (30)

Equations 26-30 contain the main results of this section.
Together with the semiclassical approach presented in the last
section, these results provide a complete numerical procedure
for evaluating the reduced density matrix, the reduced control
response function, and the optimal control field.

As we have shown, the key quantity for the approximate
temporal evolution of the reduced density matrix is the reduced
bare dynamical component of the density matp%,in eq 26.

We now present explicit coordinate and Wigner phase space
representations of this quantity. In the coordinate representation,
pY is given by (cf. eq 26)

po(Q.Q" oty Tp) =
S PIQ, x, t, + t; TY[PQ', X, t,; Tl* (31)

The corresponding Wigner representation is then obtained via
the Wigner transformation:
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po(P. Q. 1, ty; Tg) = (27h)" [ dse™"pd(Q + 2, Q —
92,t,, t;; Ty (32)

Here,N is the number of degrees of freedom in the supersystem.
Note that after taking the trace over all bath mogdse., the
integration in eq 31), the above system density matrix can no
longer be represented as a pure state. This is generally true in pump
condgnsed-phase systems. 'Usuglly, the multidimensional in- goo 300 400 500 500
tegration over the bath modess an intractable task. However, Ripm)

in the GWP picture, since the wavepacksf is a Gaussian

Energy (10*cm™)

: : : Figure 1. Schematic of the relevant potential energy surfaces, with
function in btoh the few primary system modesand the the ion pair and D states adjusted downward in energy by 2900

greater number of bath modes an analytical evaluation of 144 refiect the solvation by the Ar matrix. The vertical arrow from

the multidimensional Gaussian integration over all the bath the ground X state to the excited A state shows the Fr&dndon

modesx is possible. The reduced control response function transition, which is clearly unbound in the gas phase. The two vertical

can then be evaluated in the system coordinate representatiorrrows from the A state to thg state indicate the two resonance

via windows that are opened in the pumprobe experiment. The
internuclear distanceR are expressed in picometers.

R —
Me(tpty) = TABLE 1: Potential Parameters
J Al p(To; T [dQ dQ' A(Q', Q)p(Q, Q' ty, ty; T)] potential parameters values
(33) De(A state) 1840 cmt
re(A state) 310 pm
i i B(A state) 2147 102 pm!
or by the phase space representation via o 63,26 o
OAr—Ar 340.5 pm
ME(t,ty) = €art 130.24 cm?
) Opr- 361.7 pm
S AT, po(To TS f'dP dQ AP.Q)pw(Ps Q. ta: ty; To)] "
(34) relaxes to the Dstate. It is the Dstate that fluoresces, leading

to the LIF signal#4> In the condensed phase, these ion-pair
In next section, we will carry out a numerical simulation of  states of § are observed experimentally to be lowered in energy
a model systemlin a low-temperature argon matrix. due to solvation. The lowering of the iodiffestate reaches a
limiting value of 4200 cm? for large b—Ar, clusters i >
40)8-64 |n argon matrices, the iodine’ Btate is lowered by
A. Simulation Details. We now consider the condensed- ~2900 cnt!65and is thus shown in Figure 1 as lowered by
phase model of.lin solid argon used in this work. Since the 2900 cnt?! from that of the gas phase along with thestate.
unit cell of the argon crystal is face centered cubic, we put 500  We now find the set of effective temperatures for the
argon atorm¥'4656-60 in a pox with periodic boundary condi-  supersystem, which is at a temperature of 15 K. The ground-
tions. The system is allowed to equilibrate at 15 K and then state vibrational frequency of molecular iodine is 214 ém
the [, molecule is substituted for two adjacent argon atoms. The therefore the effective temperatufeas defined by eq 14 is 3
interaction potential between any two argon atoms and betweeny 10-7K. For this initial calculation, we take the approximation
any argon and iodine atom is modeled by a pairwise Leonard- of ysing the Debye frequency of the Ar matrix of 60 thas
Jones potential the single frequency of all the Ar atoms in the ground state;
1 6 this sets the effective temperatufé at 2 K. Both of these
Vo) = 4e((ofr)™ = (olr)") (35) effective temperatures are extremely small, and thus we can
_ o . make the approximation that only a single initial configuration
The potential parameters used in this work are tabulated in Tablejs needed, this being the configuration that is consistent with
144465869 The potential for thezexcited A state is modeled  zgrg temperature; i.e., we only propagate a single pure state.

by the following Morse potential: We now consider the exact flavor of GWP propagation that
is to be used in the calculation (cf. see eq 16). We write the
expansion of the potential energy function for the field-free
HamiltonianHy, in eq 2 as

IV. Control of | 5 in Ar: Simulation

VA(R) = Dy(1 — e PRy (36)

with the Morse potential parameters,[B, and R tabulated in

Table 1. The potential for the X state is modeled by an RKR _ Y Y
potential, which is tabulated elsewhédfe. V(Q, %) = Vo(Qy %) + aTg[Q -QJ+ Zajk[xk = X +

In Figure 1 we show a schematic of theplotential energy 5 )
surfaces used in the calculations. The ground state X(faE) 19°%V , 19V )
state and the excited state is tNgIT,,) state. The lower arrow 52_[Q - Q"+ 5 ZZ_[Xk —X” (37)
in Figure 1 indicates an electronic transition in the Frank 1Q %

Condon region from the X to A state. As indicated by Figure

1, the gas-phask — A transition at the photon energy shown where all derivatives are evaluated at the po¢ &;). Here

is purely dissociative. This is niot the case wheis lembedded we omit the cross terms which couple the degrees of freedom,
in the argon matrix, due to the caging of the by the i.e., [Q — QI 0AVI(3Qax)][X — X. Within this approxima-
surrounding argon atonf4:4¢ The probe state is thg state tion, the Schidinger wave packet for the supersystem given in
which, due to efficient solvent-induced electronic conversion, eq 16 remains in the following factorized form for all time:
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W(a.t) = yo(Q) |:| Pi(Xot) (38)

T T T T

Simulation

= = — = Experiment

The cross terms in the Taylor expansion are purposely neglected
in order to enable the wave packet to be written in this factorized
form, which both is much easier to propagate and enables the
multidimensional integration needed to calculate the reduced

LIF signal (arb. units)

material response function in eq 33 to be written as a simple -400 200 0 200 200
product of single dimensional integrations. Although the neglect Delay time (fs)

of the cross terms in the Taylor expansion of the potential is an
approximation that was made for computational expediency, We the centers of the pump and probe pulses for the experimental conditions
believe that such an approximation is reasonable for the systemof zadoyan and Apkarian. The pump wavelength is 705 nm and probe
of interest. The equations of motion for the phase space centersvavelength is 352.5 nm. The dashed line is the experimental data and

Figure 2. Collected LIF signal as a function of delay time between

of the wave packet for the supersystem, [), follow the fully the solid line is the simulated signal.

coupled classical Hamilton equations. In other words, neglect 62.2 1

of the correlation between the degrees of freedom in the wave Uet = —— (41)
packet does not mean that the guiding classical trajectories of R 1+ (R—4.17

the phase space centers of the wave packet are uncoupled. Since _ _ o ] o
the second derivatives of the potential [evaluated at the point Here the internuclear distanéeis given in A anduetis given

(Qu x))] are time-dependent, the width parameters for each wave in debyes. As expected, the transition dipole for the valence
packet in eq 38 vary with time. to ion pair transition is smaller at larger internuclear distaRce

due to the difficulty of charge transfer. Although these data
are for the transition B~ X, rather than for thg — A transition
considered in this work, and the data are for the gas phase rather
To test our potentials and semiclassical quantum dynamics, than the condensed phase, lacking any other information above
before proceeding to a numerical study of quantum control on the coordinate dependence of the dipole transition moment we
this system, we first consider a comparison of our semi-classical Will use the above equation in this work. Based on this, we
quantum dynamics simulation to the experimental ptipobe take the ratio of the transition dipole between the inner and

results obtained by Zadoyan and Apkarfdr® We simulate outer windo_vvs t0 btin/ttout ~ 2. We _take bOt_h the pump fie_Id
the collected laser-induced fluorescence (LIF) signal that is @nd probe fields to be 106 fs intensity full width at half-height

obtained from their time-resolved pumprobe experiment transform limited Gaussian pulses, yielding the value of 150 fs
using the classical Franck approximafin for the cross correlation that was measured under the experi-

mental conditions of Zadoyan and Apkari#n“¢ In Figure 2
o 5 we show the comparison of the simulated and experimental LIF
Sty ~ f,wdt TrlluedR)I 11 (U et +t9]  (39) signals as a function of delay time between the peak of the pump
and probe pulses, up to a time delay of 500 fs. The dashed
wherel(Us, t) is defined as line is the experimental data and the solid line is the calculated
LIF signal. The simulated and measured signals agree quite
© iU , well up to this delay time. Degradation of accuracy in the
I1(Ure 1) = 2 ReE}() j; d et E{t+1) (40) calculated LIF signal at later times is to be expected, since the
accuracy of GWP dynamics decreases as a function of time,
and Uy is defined adUre = (Vs — Vo)A, with Vs and Ve being because the underlying wave packets are forced to remain
the final probe state and excited-state potential energy surfacesGaussian, while real wave packets lose their simple shape in
respectively. Her€ris the carrier frequency of the probe field, an anharmonic potential. Indeed the agreement between the
ue(R) is the transition dipole between the excited and final probe experimental and simulated signal falls off after 500 fs. Thus
states, with R being thie internuclear distance, ang(t) is the we will try to control the dynamics of the system on a time
system excited electronic state density matrix. In the absencescale that is less than 400 fs, where the agreement between the
of global information about the final probe state potentials €xperiment and calculation is still quite good.
energy surface in the condensed phase, we further assume that The control objective on the A state efdhosen in this work
only the resonance windows contribute to the collected LIF IS @ cannon, i.e., a minimum uncertainty wave packet that has
signal. The resonance windows are roughly estimated by @ positive value of momentum, meaning that the iodine atoms
lowering the gas-phase ion-pair potential energy surface by 2900are moving away from each other. The functional form of this
cmL, as mentioned aboé. Corresponding to the experimental ~ target in the Wigner representatiorf‘is
conditions of Zadoyan and Apkaridfr,*6 we take the carrier

B. Results

wavelengths of the pump and probe fields to be 705 and 352.5a (p.Q) = 1 ex;{— 2 War(P — P2 4+ w, — 02—
nm, respectively. With these assumptions, the carrier frequencyAW( Q h hz[ aal ) P Q@ Q)

of the probe pulse opens two resonance windows, offie=at = ~

320 pm and the other &= 480 pm. These two probe windows 2wpo(P — P)Q — Q)] (42)

are indicated in Figure 1 by the upper two vertical arrows that

are drawn between the A state and thetate. Since these two  with (wppwog — vv,%Q)l’2 = h/2 and with the phase space center
windows are far apart, the value of the transition dipole moment of the target distribution given byQ, P).

may be different for each window. We estimate the dependence For the first case considered, we chose the cannon target
of the 8 — A transition dipole on internucleap distance by parameters a® = 380 pm,P is chosen such that the kinetic
the following empirical formula for the D— X transition energy is 2420 cmt, wgg = h/(2mw), wpp = Mwii/2, andwpg
obtained from gas-phase experimental #ata =0, withw = 250 cnTl. The solid line in Figure 3 shows the
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Figure 3. Wigner, representation of the globally optimal control field
for the condensed-phase cannon target, solid line, and its time-reversal
dashed line.At is measured with respect to the temporal center of the
pulses.

Figure 4. On-diagonal reduced density matrix created with the globally
optimal field, solid line, and created with a time-reversed globally
optimal field, dashed line. These give the probability distribution for
the kL internuclear distance, independent of the Ar atoms.

transform onto the time axis and similarly ff(w)|2 on the
frequency axis), if the control were just a function |&{w)|?
and|E(t)|2, the globally optimal field pulse and its time reversal
should produce close to identical results on the wave packet.
We now apply this test of coherent control for the cannon target
in the condensed phase. In Figure 4, the solid line shows the
on-diagonal reduced density matrix (the reduced density matrix
equivalent of the pure staff’(R)|?, i.e., the probability density
distribution for the } internuclear distance irregardless of Ar
atomic positions) that is created with the globally optimal cannon
field and the dashed line that which is created by the time-
reversal of the globally optimal cannon field. As indicated in
Figure 4, the distribution created by the optimal field is much

Wigner transform of the computed globally weak response
optimal field for this cannon target. Note that, for clarity, we
used a window function in the plotting of the Wigner transform
which reduces the interference normally present in the standard
Wigner transforn?4.68.69 The globally optimal weak response
field is a short pulse with an overall positive linear chirp, as
expected from previous calculatioffs.Note that the time axis
is labeled byAt, which measures time from the temporal center
of the globally optimal field.

We now calculate how well this globally optimal field has
done with respect to reaching the desired objective. We term
this measure the achievement and define the achievement as

~ R 12 more focused than that created by the time-reversal of the
at) = TrsyiApe(tf)] 43) globally optimal field. The achievement for the time-reversed
P\ THA] Tr pg(t)] globally optimal field in the condensed phasenis= 0.71, to

be contrasted with the achievement for the globally optimal field,

Herepff(tf) is the field-initiated reduced density matrix created o = 0.89. The larger focusing and achievement for the globally
on the A state by the control field, which is given within first optimal field than that for its time-reversal indicates ()|
order time-dependent perturbation theory by eq 19. The and |E(w)|?> cannot explain the control and that higher order
achievement is designed to range between zero (no control) anccoherent effects must be involved in reaching the target
unity (perfect control). The globally optimal field for the objective. We can approximately quantify this by defining the
condensed-phase cannon target shown in Figure 3 leads to aifollowing “sophistication index”,
achievement value af = 0.89. Calculations for such targets
in the gas phase typically lead to values of the achievement on & = Ugptimal — Aimereersed (44)
the order of 0.96-:0.95, indicating that the ability to control
the dynamics is somewhat hindered by the condensed-phasevhereopimal is the achievement for the globally optimal field
environment. This decrease in controllability in condensed- and tuimeresersediS the achievement for the time-reverse of the
phase environments has been observed previously in our otheglobally optimal field. & is a measure of the sophistication of
theoretical calculation36:37 and even in a single oscillator the field tailoring included in the control. The parameé&er
bath?° and will be further discussed below. ranges from zero, if there is no sophistication as measured by

Thus far the simulations have shown that there is partial the difference in achievement if the optimal field and its time
controllability of the reduced density matrix in the condensed- reversal (for example, if the globally optimal control pulse is a
phase system. We now turn to another more subtle question:transform limited pulse), to unity if a globally optimal field
is the control described above truly a coherent phenomena, inyields an achievement of unity while its time-reversal leads to
the sense that the control cannot be entirely explained just as aan achievement of zero. A nonzero valuefoindicates that
result of the frequency spectrum (intensity versus frequency) the sophistication of the light pulse is playing a role in reaching
or just as a result of the intensity versus time of the pulse? In the target objective. The value &ffor the cannon target in
other words, must one include a higher order of description like the condensed phase §s= 0.18, indicating that there is a
“how does the frequency of the pulse vary with time” in order substantial component of sophistication involved in the control
to explain its effect? In previous work on gas-phaseve were field, in that it and its time-reversal provide significantly
able to answer this question in a positive way using the different results as shown in Figure 4.
following argument. Take the time-reversal of the globally =~ We now more completely investigate how the condensed-
optimal field, shown as the dashed line in Figure 3, find the phase environment effects both the achievementand the
wave packet that is created by this time-reversed field, and sophistication index£. To do this we choose targets at
compare this wave packet to the wave packet that is created bysuccessively larger, linternuclear distances, where the effect
the globally optimal field. Since the time-reversed field and of the argon bath on the quantum dynamics becomes progres-
the original globally optimal field have identical frequency (i.e., sively more pronounced. We find it useful to choose targets
power) spectraE(w)|?, and very similar intensity versus time, ~ for this study in the following way: (i) run classical trajectories
|[E(t)|2, as can be seen from inspection of Figure 3 (with the on the composite supersystem, (ii) pick a valueQofor the
knowledge that|E(t)|2 is the projection of such a Wigner coordinate space center of the target, (iii) choose the conjugate
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Figure 5. (a) The achievement,, as a function of internuclear distance ~ Figure 6. (a) The light field sophistication index, as a function of

for the condensed-phase system, solid circles, and for the correspondingnternuclear distance for the condensed-phase system, solid circles, and
gas-phase system, open circles. (b) The achieveragag a function for the corresponding gas-phase system, open circles. (b) The
of At, the time between the peak of the optimal field and the target Sophistication index;, as a function ofAt, the time between the peak
time, for the condensed-phase system, solid circles, and the gas-phasef the optimal field and the target time, for the condensed-phase system,
system, open circles. solid circles, and the gas-phase system, open circles.

value of the momentum along this trajectory as the value of interacts for a longer time and over a longer distance with the
the momentum center of the targBt,and (iv) set the width of ~ condensed-phase environment.

the minimum uncertainty target to be the same valug = Now we consider the effect of the condensed-phase environ-
hl(2mw) with @ = 250 cnt? for all internuclear distances. By ~ ment on the sophistication indéx In Figure 6a we show as
choosing a series of targets in this way, we are assured thata function of internuclear distance for the condensed phase, solid
each target is achievable, since these targets have approximatelgircles, and for the gas phase, open circles. As indicated in
the same expectation of the energy as that of thebkrational Figure 6a, the value df is universally lower in the condensed-
degree of freedom at any particular target internuclear position. phase system than in the corresponding gas-phase system. Also,
To further demonstrate how the condensed-phase environmenthe values for this parameter in general decrease as a function
effects the controllability, we will compare the achievements of internuclear distance for the condensed-phase system (and
and sophistication indices calculated for the condensed-phasdhus of time), while they monotonically increase in the gas-
system to their values in the corresponding gas-phase systemphase system. In Figure 6b we show thealues as a function

We also choose targets for the corresponding gas-phase systerfif At. The open circles are tfigvalues for the gas-phase system

as outlined above, but using a gas-phase classical trajectoryand the solid circles are thgvalues for the condensed-phase
This means that, for any given internuclear distance, the targetSystem. These results demonstrate that higher order coherence
for the gas phase and condensed phase will have the same widt®f the globally optimal field becomes less important in
and the same coordinate space center but a different value forcondensed-phase systems and that we have less ability as a
the momentum center. In Figure 5a, the solid circles show the function of time to control the reduced system by more
achievement as a function of internuclear distance for the SOphisticated pulse tailoring techniques.

condensed phase, while the open circles show the achievement )

for the corresponding gas-phase system. It is evident that theV: Conclusion

achievement values are universally lower for the condensed- The present work has supported four major themes. The first
phase system than for the corresponding gas-phase system ang that a reasonable control objective in condensed phases is
that the achievement values for the condensed-phase systenthe reduced density matrix. The second is the development of
decrease as a function of increasing internuclear distance (anch novel way to combine classical sampling techniques and
thus of time between control pulse and target), while the quantum wave packet dynamics to study both inhomogeneous
achievement values for the corresponding gas-phase system stagtructure effects and homogeneous dynamic effects in condensed
relatively constant as the internuclear distance of the targetphases. The third is that semi-classical Gaussian wave packet
increases. In Figure 5b we show the achievement values as gGWP) techniques coupled with approximate, nearly classical,
function of At, the time between the peak of the optimal field nonzero temperature averaging procedures can lead to a tractable
and the target time. The open circles are the achievement valuesolution of the control equations in large quantum systems on
for the gas-phase system, and the solid circles are the achieveshort time scales. The fourth is that, although perfect coherent
ment values for the condensed-phase system. These resultsontrol is elusive, some degree of quantum control is still
demonstrate that the negative effect of the condensed-phaseossible in a cold condensed phase quantum system on short
system on the controllability becomes more pronounced as thetime scales and that, on yet shorter time scales, more sophis-
time and distance separating the initial controlling pulse and ticated pulse tailoring such as controlling the pulse chirp can
the ultimate target increase and the controliedhromophore be helpful.
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It is not possible to control all 28 degrees of freedom in a  sions to be further tested: (i) control can be achieved at short
condensed phase quantum system. If, as is usually the caseenough times between the controlling light field and target time
there is a small subset of the composite system that one desiredut is less effective for the liquid and solid states than for the
to control, the methodology we have presented here can be usedorresponding gas-phase cases and generally declines in ef-
for controlling this small subsystem. We reformulated quantum fectiveness with increasing time and increasing distance of wave
control in the weak response regime to control the reduced packet propagation, (ii) the average photon energy is, in general,
density matrix of the system. We have shown that the greater for the same target than for the gas phase, to make up
subsequent control equations for the reduced density matrix havefor the loss of energy to other degrees of freedom, and (iii) the
a similar form to the control equations for the complete density sophistication of the optimal light fields is, in general, less than
matrix3® and have presented a numerical algorithm for finding in the gas phase and declines further with increasing time and
the optimal control fields once one knows the time-evolution distance of wave packet propagation, as targets are set further
of the system under the field-free Hamiltonian. away along a trajectory from the original atomic positions at

The solution of the multidimensional time-dependent the time of application of the control light field.

Schradinger equation (TDSE) must be used as input in order

to determine the control fields for the reduced density matrix. ~Acknowledgment. Y. Yan acknowledges support by the
In a condensed-phase system this input is impossible to computd1onk Kong  Government (RGC DAG94/95.SC05 and
exactly since, beyond a few dimensions, the multidimensional HKUST600/95P).
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