Events in physical chemistry.

Engineering Quantum Properties of Molecular Circuits through Chemical Principles

Abstract: I will describe my lab’s recent progress in demonstrating and controlling quantum phenomena in single molecule junctions. Our past and future efforts are focused along two complementary directions. First, we work to demonstrated how synthetic modification can be leveraged to create functionality, such as quantum sensing, switching and high conductance of topological electronic states in molecules.

Developing Electronic Structure Methods for Solids

Abstract: Materials design in a variety of industries would be helped by the development of new ab initio quantum chemistry methods to model electron-electron interactions in solids. Progress in this area is challenging because of electron correlation and specialized techniques that show potential are coupled cluster theory and quantum Monte Carlo. I will discuss ways in which we are trying to address two barriers preventing the widespread adoption of these methods.

Connecting the dots of immune machinery using a single-molecule lens

Abstract: The human immune system comprises a network of specialized cells and biomolecules that work together to defend the body against attacks by foreign invaders, known as antigens. This intricate network of cells and biomolecules also creates a complex puzzle. While the immune system has the capacity for an almost unlimited range of antigens, how does it achieve exquisite specificity? What enables immune cells to communicate over long distances and orchestrate a bodywide immune response?

How do many-body scattering effects contribute to the excitonic dynamics in semiconductors?

Abstract: Modern multi-dimensional spectroscopy offers a unique look "under the hood" allowing us to probe the dynamics of excitons in semiconducting systems. In this talk, I shall review our recent quantum stochastic model for spectroscopic lineshapes in a co-evolving and non-stationary background population of excitations. Starting from a field theory description for interacting bosonic excitons, we derive a reduced model whereby optical excitons are coupled to an incoherent background via scattering as mediated by their screened Coulomb coupling.

Modeling of electrostatic and chemical properties of nanoscopic and microscopic aerosol droplets

Abstract: Atmospheric and man-made droplet aerosols show many commonalities in their physical and chemical properties.  Both systems are characterized by confinement and large surface to volume ratio, which alter the chemistry of many processes relative to their bulk solution counterparts.

Excitations Dynamics Driving Electronic Correlations in Molecules and Solids

Abstract: Capturing the dynamics of electronic excitations in realistic systems containing more than a few electrons is one of the outstanding theoretical challenges. Dynamical quantum fluctuations mediate interactions among excited electrons (and holes), determining the material electronic structure and optoelectronic response. A predictive ab-initio theory is critical for understanding, predicting, and designing novel compounds with tailored (quantum) properties.

Pages

Subscribe to RSS - Physical Seminar