
UCI PHYSICS/CHEM207 – Applied Physical Chemistry, Summer 2022

74

Lecture #4 of 15

(3: TThF, 5: <u>M</u>TWThF, 4: MTWTh, 2: TW)

Prof. Shane Ardo Department of Chemistry University of California Irvine

75 oes

... What does the atomic number tell you?...

... And why is the "average" atomic mass indicated?...

... for example, recall that there are 15 isotopes of carbon: ¹¹C, ¹²C, ¹³C, ¹⁴C

UCI PHYSICS/CHEM207 – Applied Physical Chemistry, Summer 2022

76

Chemical Properties

Prof. Shane Ardo Department of Chemistry University of California Irvine

(REVIEW) 80

(Electro)Chemical Potential

So, let's take a deeper look at this for $A \rightleftharpoons B$

Assume this reaction has a negative free energy difference... its infinitesimal change is... $dG = \left(\frac{\partial G}{\partial n_{\rm A}}\right) \partial n_{\rm A} + \left(\frac{\partial G}{\partial n_{\rm B}}\right) \partial n_{\rm B} = \mu_{\rm A} \partial n_{\rm A} + \mu_{\rm B} \partial n_{\rm B}... \text{ but since every loss of A has a gain of B}$ $dG = (\mu_B - \mu_A)\partial n_B$... and so this is a detailed thermodynamic version of an ICE table!

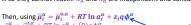
$$A - x$$
; $B + x$

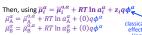
$$A \rightleftharpoons B$$
(E)quilibrium

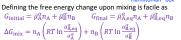
(UPDATED/REVIEW) 81

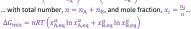
But hold on... at equilibrium, what is dG? • Yet based on the equation, won't all A turn into B?

- ... the answer is that μ_l are not constants with ∂n_l ... and ultimately $\mu_B^\alpha=\mu_A^\alpha$, at equilibrium
- ... as seen (next) by its definition: $\overline{\mu}_i^{\alpha} = \mu_i^{\alpha} + z_i q \phi^{\alpha} = \mu_i^{0,\alpha} + RT \ln a_i^{\alpha} + z_i q \phi^{\alpha}$ in phase α ...

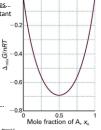

(Electro)Chemical Potential


So where does the fundamental equation, $\overline{\mu}_i^{\alpha}=\overline{\mu}_i^{0,\alpha}+RT\ln a_i^{\alpha}+z_iq\phi^{\alpha}$, come from?


- ... recall that, by definition, $\mathbf{dw'} = \mathbf{dG_{sys}} + \mathbf{S_{sys}} \mathbf{dT} V\mathbf{dp}$ and $\overline{\mu}_{l} = \left(\frac{\partial G}{\partial n_{l}}\right)_{T,p,n_{l} \neq l}$... and thus for species i, at constant T and $p_{\text{(total)}}$... one has $\mathbf{dw'}/\mathbf{dn_{l}} = \mathbf{d}\overline{\mu}_{l} V_{l} \mathbf{dp_{l}}$... where V_{l} is partial molar volume, $\left(\frac{\partial V}{\partial n_{l}}\right)_{T,p,n_{l} \neq l}$, and $\mathbf{p_{l}}$ is partial pressure
- ... then assuming $\underline{ideal\ gas\ law}$ behavior, V_i = RT/p_i ... and so one has $\mathbf{d}\overline{\mu}_i$ = $RT\ (\mathbf{1}/p_i)\ \mathbf{d}p_i$ + $\mathbf{d}w'_i$
- ... integration from $\overline{\mu}_i^{0,\alpha}$ to $\overline{\mu}_i^{\alpha}$ results in $\overline{\mu}_i^{\alpha} = \overline{\mu}_i^{0,\alpha} + RT \ln (p_i^{\alpha}/p_i^{0,\alpha}) + \mathbf{w}_i^{\prime}$
- ... and when species i is non-ideal, $a_i^\alpha=\gamma_i^\alpha(p_i^\alpha/p_i^{0,\alpha})$ is more accurate in the natural log term
- ... and/or when species i is charged, $z_i \neq 0$, then spatial effects due to ϕ^{α} are important


(Electro)Chemical Potential

So in the previous example, imagine that A and B are ideal gases... ... so they cannot react... $n_{\rm A}$ and $n_{\rm B}$ are independent and constant



(UPDATED/REVIEW) 82

Chemical Potential

(REVIEW) 83

$$\mu_i^{\alpha} = \left(\frac{\partial G_{mix}}{\partial n_i}\right)_{T,p,n_{j\neq i}}^{n_i}$$

Figures from Prof. Mark Lonergan (Univ. of Oregon)

Equilibrium

classical version of (REVIEW) 84 effects outside of the Hamiltonian "box"

And, in summary, as it relates to the fundamental equation, $\overline{\mu}_i^{\alpha}=\overline{\mu}_i^{0,\alpha}+RT\ln a_i^{\alpha}+z_iq\phi^{\alpha}$

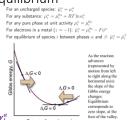
Recall that for species in solution, $a_i^\alpha=\gamma_i^\alpha\frac{c_i^\alpha}{c_i^{0,a}}$... where γ_i^α are activity coefficients (more in a bit

	Component	Basis	Standard state	Activity	Limits
	Solid or liquid		Pure	a=1	
it)	Solvent	Raoult	Pure solvent	$\alpha=p/p^{\times},\alpha=\gamma\times$	$\gamma \rightarrow 1$ as $x \rightarrow 1$ (pure solvent)
	Solute	Henry	(1) A hypothetical state of the pure solute	$\alpha=p/K,\alpha=\gamma\kappa$	$\gamma\!\to\!1\mathrm{m}\mathrm{x}\!\to\!0$
			(2) A hypothetical state of the solute at molality b**	$\alpha=2htV^{\alpha}$	$\gamma \rightarrow 1 \text{ m B} \rightarrow 0$
	In each case, p:= pr	*+ RTIs o.			
	Table 5-3 Alban Planter Chemistry, Ep.				

 $A \rightleftharpoons B$

And back to $dG=\left(\bar{\mu}_{\rm B}^a-\bar{\mu}_{\rm A}^a\right)\partial n_{\rm B}...$ where $\partial n_{\rm B}$ is termed the progress of the reaction, and so... $\Delta G=\left(\bar{\mu}_{\rm B}^a-\frac{v_{\rm A}}{v_{\rm B}}\bar{\mu}_{\rm A}^a\right)...$ with $v_{\rm A}$ (stoichiometric number)

- ... when $\Delta G < 0$ the reaction is ${\bf exoergic/exergonic},$ and net proceeds as written
- ... when $\Delta G>0$ the reaction is **endoergic/endergonic**, and net proceeds opposite of as written ... when $\Delta G=0$ the reaction is at **equilibrium** and proceeds equally in both directions (net is 0)


Chemical (and Thermal) Equilibrium

(REVIEW) 85

Given $\Delta G = (\ddot{\mu}_{\rm B}^G - \ddot{\mu}_{\rm A}^\alpha)$... which could have v_l too... and using $\ddot{\mu}_l^\alpha = \ddot{\mu}_l^{\alpha\alpha} + RT \ln \alpha_l^\alpha + z_l q \phi^\alpha$ $\Delta G = \ddot{\mu}_{\rm B}^{0,\alpha} + RT \ln \alpha_{\rm B}^\alpha + z_{\rm B} q \phi^\alpha - \ddot{\mu}_{\rm A}^{0,\alpha} + RT \ln \alpha_{\rm A}^\alpha + z_{\rm A} q \phi^\alpha$

$$\begin{split} \Delta G &= \bar{\mu}_{B}^{0,\alpha} + RT \ln \alpha_{B}^{\alpha} + z_{B} q \phi^{\alpha} - \\ &= \bar{\mu}_{A}^{0,\alpha} + RT \ln \alpha_{A}^{\alpha} + z_{A} q \phi^{\alpha} \end{split}$$
 Which means that $\Delta G &= (\bar{\mu}_{B}^{0,\alpha} - \bar{\mu}_{A}^{0,\alpha}) + RT \ln \frac{\alpha_{B}^{\alpha}}{\alpha_{A}^{\alpha}} + zq(0)$

 $\begin{array}{l} \Delta G = \Delta G^{0,\alpha} + RT \ln Q ... \text{ where } Q = \frac{a_{\rm H}^6}{a_{\rm H}^4} \text{ and}... \\ \Delta G = \Delta G^{0,\alpha} + RT \ln Q ... \text{ where } Q = \frac{c_{\rm H}^6/c_{\rm H}^{\alpha\alpha}}{a_{\rm H}^4} \text{ and}... \\ \Delta G = \Delta G^{0,\alpha} + RT \ln Q' ... \text{ where } Q' = \frac{c_{\rm H}^6/c_{\rm H}^{\alpha\alpha}}{c_{\rm H}^4/c_{\rm H}^{\alpha\alpha}} ... \text{ where } \Delta G^{0,\alpha} = \frac{c_{\rm H}^6/c_{\rm H}^{\alpha\alpha}}{c_{\rm H}^4/c_{\rm H}^{\alpha\alpha}} \text{ and} ... \end{array}$

 $\underline{\text{At equilibrium}}\,\bar{\mu}_{\text{B}} - \bar{\mu}_{\text{A}} = 0 = \Delta G^{\text{or},\alpha} + RT \ln Q_{\text{eq}}' \\ \text{so}\,\Delta G^{\text{or},\alpha} = -RT \ln K' \text{ with } K' = \frac{c_{\text{Beq}}^{\alpha} c_{\text{B}}^{\alpha 0}}{c_{\text{A}}^{\alpha} c_{\text{B}}^{\alpha 0}/c_{\text{B}}^{\alpha 0}}$

Type of Equilibrium	Name and Symbol of Equilibrium-Constant	Typical Example	Equilibrium-Constant Expression
Dissociation of water Heterogeneous equilibrium between a slightly soluble substance and its ions in a saturated solution	Ion-product canstant, K _w Solubility product, K _w	$2H_2O = H_2O^+ + OH^-$ $BaSO_a(a) = Ba^{2+} + SO_a^{2+}$	$K_{\varphi} = [H_{\varphi}O^*][OH^-]$ $K_{\varphi} = [B_{\varphi}^{-1}][SO_{\xi}^{-1}]$
Dissociation of a weak acid or base	Dissociation constant, $K_{\rm s} \ {\rm or} \ K_{\rm b}$	CH,COOH + H,O = OH, + CH,COO CH,COOH + H,O =	$K_{i} = \frac{\text{[CH,COOH]}}{\text{[CH,COOH]}}$ $K_{i} = \frac{\text{[OH'][CH,COOH]}}{\text{[CH,COOOH]}}$
Formation of a complex ion	Formation constant, β_a	$Ni^{2*}+4CN^- \rightleftharpoons Ni(CN)_i{}^{2-}$	$\beta_i = \frac{[\text{Ni}(\text{CN})_i^{2^-}]}{[\text{Ni}^{1+}][\text{CN}^-]^t}$
Oxidation/reduction equilibrium	Kota	$MnO_4^- + 5Fe^{2+} + 8H^+ \Rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$	$K_{\text{min}} = \frac{[\text{Mn}^{2^{1}}][\text{Fe}^{2^{1}}]^{5}}{[\text{MnO}_{4}][\text{Fe}^{2^{1}}]^{5}[\text{H}^{*}]^{5}}$
Distribution equilibrium for a solute between immiscible autents	K _L	$I_2(aq) := I_2(aq)$	$K_d = \frac{[t_2]_{eq}}{[t_2]_{eq}}$

(REVIEW) 86 ... so if you see a capital K... the letter after J in the alphabet... you should know what it means and what chemists are thinking about...

... but shouldn't these be K' values, and where are the standard states?... Um, yup!... Oh nomenclature; speaking of which... https://goldbook.iupa c.org/

87

http://sites.usm.edu/electrochem/Analytical%20 Chemistry/Lecture%20 Notes/Chapter%209%20 Chem%20 Equilibria.pdf

Scientists	& Engineers	love to vary	Temperature

 $\Delta G^{{\rm o}\prime,lpha}=-RT\ln K'$ indicates that T relates a measurable quantity, K', to $\Delta G^{{\rm o}\prime,lpha}...$

... but an even more accurate analysis relies on $\Delta G^{o\prime,\alpha}=\Delta H^{o\prime,\alpha}-T\Delta S^{o\prime,\alpha}$ for a given T and p, ... leading to the linearized ${\bf van't}$ Hoff equation: $\ln K'=\frac{\Delta H^{o\prime,\alpha}}{R}\frac{1}{r}+\frac{\Delta G^{o\prime,\alpha}}{R}$

... but this is also an approximation that only holds over a rather small ranges of T due to the temperature dependence of $\Delta H^{or,\alpha}=C_p\Delta T$, and C_p , and $\Delta S^{or,\alpha}$

 \dots nevertheless, many thermochemical properties that can be determined by varying $\textit{T} \dots$

... and chemical kinetic properties too (stay tuned)...

 $\underline{\text{At equilibrium}}\,\bar{\mu}_{\text{B}} - \bar{\mu}_{\text{A}} = 0 = \Delta G^{\text{O}',\alpha} + RT \ln Q'_{\text{eq}}, \text{ so } \Delta G^{\text{O}',\alpha} = -RT \ln K' \text{ with } K' = \frac{c_{\text{Beq}}^{\alpha}c_{\text{B}}^{\alpha}Q'_{\text{B}}^{\alpha}}{c_{\text{A}}^{\alpha}c_{\text{A}}/c_{\text{A}}^{\alpha}Q'_{\text{B}}^{\alpha}}$

Activity Coefficients

Debye–Hückel equation (in water at 25 °C) $\log \gamma_X = -\frac{0.51z_X^2\sqrt{I}}{1+3.3\alpha_X\sqrt{I}}$

 α = effective diameter (nm) of hydrated ion, X

88

... the derivation is long... ... but the main idea is that you balance thermal motion (Boltzmann) with electrostatics (Poisson/ Gauss)

Table 10-2, p. 274 in Skoog & West

... the "limiting law" is when $I \rightarrow 0$ (< 10 mM)...

 $\log \gamma_X = -0.51 z_X^2 \sqrt{I}$

Le Chatelier's Principle	89		
Initial states equilibrate based on ICE, ICE Baby!			
A ≃ B + C	Given K', and assuming typical		
Reaction: HA A' H ₃ O*	standard-state conditions, use the following equation		
C -x M +x M +x M http://bemwiki.ucdavis.edu/Physical Chemistry/Eq mr201211114/justi	n- (in ICE) to calculate x		
uilibria Le Chatelier%27s Principle/Ice Tables A B + C B + C	$K' = \frac{\left(c_{\text{B,eq}}^{\alpha}/c_{\text{B}}^{\text{o},\alpha}\right)\left(c_{\text{C,eq}}^{\alpha}/c_{\text{C}}^{\text{o},\alpha}\right)}{c_{\text{A,eq}}^{\alpha}/c_{\text{A}}^{\text{o},\alpha}}$		
Vanilla Ice wants to know, "As the initial state progresses, what happ if you keep supplying A and pulling B and C away?"	$c_{ m A,eq}^{lpha}/c_{ m A}^{ m o,lpha}$	-	
ii you keep suppiying A anu puiing B anu C away?			
Le Chatelier's Principle	90		
Le Chatelier's Principle indicates that the reaction will continue	"changes in the temperature, pressure, volume, or		
\rightarrow A \rightleftharpoons B + C \rightarrow	concentration of a system will result in predictable and		
but for how long?	opposing changes in the system in order to achieve a		
$M_1 \rightarrow A \rightleftharpoons B + C \rightarrow M_2$	new equilibrium state." – Wiki, Le Chatelier's principle		
as long as the rate of supply in and/or the rate of exit out are non-z	ero		
In an ideal world, i.e. under certain rare cor	nditions.		
$\frac{\partial c_A}{\partial t} = \frac{\partial c_B}{\partial t} = \frac{\partial c_C}{\partial t} = 0$, and the system is net flux of species (generation of A, from	n a <u>steady-state</u> where there is a n the left, and loss of B & C. to the		
right) but the species concentrations in	:he cell do not change with time		
Chemical Properties (summary)	for today) 91		
Molecular nomenclature, Solutions, Balanced contacts	hemical reactions		
State functions, Standard states, Thermochemi	•		
 Non-ideal gases, Intermolecular forces, Physica changes, Colligative properties, Water activity 	I properties, Phase	-	
 Free energy, (X)Chemical potential, Chemical energy equation, Activity coefficients, Le Chatelier's presented. 			
• Schrödinger equation Internal energy Atomic o			

Valence bond theory, Molecular orbital theory, Band diagrams

• Crystal field theory, Ligand field theory