Lecture \#11 of 14

(3: TThF, 5: MTWThF, 4: MTWTh, 2: TW)

Prof. Shane Ardo

Department of Chemistry
University of California Irvine

Chemical Kinetics

Prof. Shane Ardo
Department of Chemistry
University of California Irvine

Chemical Kinetics

- Continuity of mass, Mass transfer, Nernst-Planck equation, Diffusion, Diffusion coefficient, Migration, Mobility, Convection, Boundary layer
- Mass action, Microscopic reversibility, Förster cube, Square schemes, Rate constants, Activation energies, Transition-state theory, MarcusHush theory, Transition-state character, Reorganization energies (outer and inner)
- Linear free energy relationships, Charge transfer across electrified interfaces, Butler-Volmer equation, Fermi's golden rule, Solid-state physics, Marcus-Gerischer theory
- Rate-determining step, Steady-state \& Pre-equilibrium approximations, Langmuir/Frumkin isotherms

Continuity of Mass

(REVIEW) 296

Thermodynamics versus Kinetics

(REVIEW) 297

Thermodynamics are only as important as their influence on kinetics...
... energetics from thermodynamics dictate equilibrium concentrations..
... but it is the kinetic (and transport) properties that influence how those conditions

1D Transport in Liquids (solids are simpler) ${ }^{\text {(RE) }}$
$\frac{\partial c_{\mathrm{A}, z_{\mathrm{o}}}}{\partial t}=-\frac{\partial \mathbf{N}_{\mathrm{A}}}{\partial z}$
$\begin{gathered}\text { (MechEs should be yawning) }\end{gathered} \mathrm{A}_{z_{1}}^{\rightleftarrows} \mathrm{N}_{\mathrm{A}}=-\left(\frac{D_{\mathrm{A}} c_{\mathrm{A}}}{R T}\right) \frac{\partial \bar{\mu}_{\mathrm{A}}}{\partial z}+v c_{\mathrm{A}}$
\ldots... there are ma
.there are many driving forces for flux of species.. ... convection ($v c$) is just one (e.g., $d T / d x$)
Group terms... then mass transfer resembles mass action (assume $v=0$ for simplicity)...

$$
\begin{aligned}
& \mathbf{N}_{\mathrm{A}}=-\boldsymbol{D}_{\mathrm{A}} \frac{\boldsymbol{\partial}\left(\overline{\boldsymbol{\mu}}_{\mathrm{A}} / \boldsymbol{R} \boldsymbol{T}\right)}{\boldsymbol{\partial z}} c_{\mathrm{A}} \quad \begin{array}{l}
\text { What are the directions for the dimensions of } \boldsymbol{D}_{\mathrm{A}} ? \\
\text { BOLD }\left(\left(\mathrm{cm}^{2} / \mathrm{s}\right) / \mathrm{cm}\right)=\mathrm{cm} / \mathrm{s} . . . \text { a velocity! } \\
\ldots . . \text { and with } \frac{\partial}{\partial z^{\prime}} \text { units are } \mathrm{s}^{-1} \ldots \text { an inverse time constant! } \\
\ldots \text { and that equals zero at steady state }
\end{array} \\
& \text { (Note that... } R_{\mathrm{A}, \text { total }}=-\boldsymbol{k}_{\boldsymbol{f}}^{\prime} c_{\mathrm{A}}+\boldsymbol{k}_{\boldsymbol{b}}^{\prime} c_{\mathrm{B}} \ldots \text { with } \boldsymbol{k}_{\boldsymbol{j}}^{\prime}\left(\mathrm{s}^{-1}\right) \text {, an inverse time constant!) }
\end{aligned}
$$

1D Transport in Solids (liquids are "harder") ${ }^{(\text {RENEW })^{(1)} 299}$

Let's expand the total	$\text { Flux }_{z, e}=-\frac{\sigma_{e}}{F^{2}} \frac{d \overline{\boldsymbol{\mu}}_{e}}{d z}-S_{e, T_{e}} \frac{d \boldsymbol{T}_{e}}{d z}$	$\left(\frac{\partial G}{\partial n_{i}}\right)_{T, p}$	$=\bar{\mu}_{i}$
differential... assuming a	$\text { Flux }_{z, e}=-\frac{D_{e} n_{e}}{k T_{e}}\left(\frac{d \boldsymbol{\mu}_{e}}{d z}-q \frac{d \phi}{d z}\right)-S_{e, T_{e}} \frac{d T_{e}}{d z}$	$\mu_{i}=$	$k T_{i} \ln$
species, e, with valency, z_{e}, equal to -1	$\text { Flux }_{z, e}=-\frac{D_{e} n_{e}}{k T_{e}}\left(\frac{d \mu_{e}^{0}}{d z}+\frac{k T_{e}}{\gamma_{e}} \frac{d \gamma_{e}}{d z}+\frac{k T_{e}}{n_{e}} \frac{d n_{e}}{d z} .\right.$	$\frac{{ }_{e}^{e}}{e} \frac{d n_{e}^{o}}{d z}+$	$\left(\ln \frac{\gamma_{e} n_{e}^{e}}{n_{e}^{e}}\right)$
other species may have different values for every term, except ϕ	$\text { Flux }_{z, e}=-D_{e}\left(\frac{n_{e}}{k T_{e}} \frac{d \mu_{e}^{o}}{d z}+\frac{n_{e}}{\gamma_{e}} \frac{d \gamma_{e}}{d z}+\frac{d n_{e}}{d z}-\right.$	$+\frac{n_{e}}{T_{e}}$	$\frac{d T}{d x}$
	$\text { Flux }_{z, e}=-D_{e} \frac{d n_{e}}{d z}+\frac{q D_{e} n_{e}}{k T_{e}} \frac{d \phi}{d z}$	g spat	invaria
Drift-Diffusion equation	$\text { Flux }_{z, e}=-D_{e} n_{e}\left(\frac{d \mu_{e}^{o}}{k T_{e} d z}+\frac{d\left(\ln \gamma_{e}\right)}{d z}+\frac{d\left(\ln n_{e}\right.}{d z}\right.$	$-\frac{d\left(\ln n_{e}^{0}\right)}{d z}$	$\left.\frac{d(q \phi)}{k T_{e} d z}\right)$

Mass Action / Microscopic Reversibility

Now, consider the reaction to be at equilibrium $\ldots \Delta G^{\alpha}=0=\Delta G^{o \prime, \alpha}+R T \ln Q^{\prime}=\bar{\mu}_{\mathrm{B}}^{\alpha}-\bar{\mu}_{\mathrm{A}}^{\alpha}$ So, $\Delta G^{\mathrm{o}^{\prime \prime}, \alpha}=-R T \ln K^{\prime}$, with $K^{\prime}=\frac{c_{\mathrm{B}, \mathrm{eq}}^{\alpha} / c_{\mathrm{B}}^{\mathrm{o}, \alpha}}{c_{\mathrm{A}, \text { eq }}^{\alpha} / c_{\mathrm{A}}^{\mathrm{o,} \mathrm{\alpha}} \ldots}$ and, of course, $K^{\prime}=\exp \left(-\frac{\Delta G^{o^{\prime \prime}, \alpha}}{R T}\right)$ But also, $\frac{\partial c_{\mathrm{A}}}{\partial t}=0=-k_{f} a_{\mathrm{A}, \mathrm{eq}}^{\alpha}+k_{b} a_{\mathrm{B}, \mathrm{eq}}^{\alpha} \cdots \frac{k_{f}}{k_{b}}=\frac{a_{\mathrm{B}, \mathrm{eq}}^{\alpha}}{a_{\mathrm{A}, \mathrm{eq}}^{\alpha}}=K=K^{\prime} \frac{\gamma_{\mathrm{B}}^{\alpha}}{\gamma_{\mathrm{A}}^{\alpha}} \quad \ldots$ it can get messy Or equivalently, $\frac{\partial c_{\mathrm{A}}}{\partial t}=0=-\boldsymbol{k}_{\boldsymbol{f}}^{\prime} c_{\mathrm{A}, \mathrm{eq}}^{\alpha}+\boldsymbol{k}_{\boldsymbol{b}}^{\prime} c_{\mathrm{B}, \mathrm{eq}}^{\alpha} \cdots \frac{\boldsymbol{k}_{f}^{\prime}}{\boldsymbol{k}_{\boldsymbol{b}}^{\prime}}=\frac{c_{\mathrm{B}, \mathrm{eq}}^{\alpha}}{c_{\mathrm{A}, \mathrm{eq}}^{\alpha}}=K^{\prime} \frac{c_{\mathrm{B}}^{\mathrm{o}, \alpha}}{c_{\mathrm{A}}^{0, \alpha}}=K \frac{\gamma_{\mathrm{A}}^{\alpha}}{\gamma_{\mathrm{B}}^{\alpha}} \frac{c_{\mathrm{B}}^{\mathrm{o}, \alpha}}{c_{\mathrm{A}}^{(, \alpha}}$

Förster Cube and Square Schemes

before we add light... let's backtrack a bit...
. first we must understand dark thermal processes...2. R. Grabowski \& W. Rubaszewska, J. Chem. Soc. Faradoy Trans. 1, 1977, 73, 11-28

Förster Cube and Square Schemes

Does this obey Hess's law?
Redox: $E^{\circ}=-\Delta G^{\circ} / n F$
Acidity: $\mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}=\Delta G^{\circ} /(2.303 \mathrm{RT})$

Does Bottom Route $=$ Top Route?
$10(-0.0592 \mathrm{~V})+-0.8 \mathrm{~V}=-1.5 \mathrm{~V}+-2(-0.0592 \mathrm{~V})$?
$-0.59 \mathrm{~V}+-0.8 \mathrm{~V} \approx-1.5 \mathrm{~V}+0.12 \mathrm{~V} . .$. so, \sim yes!
anyway... but is the concerted path possible? R. Tyburski, T. Liu, S.D. . Glover \& L. Hammarström,.J. Am. Chem. Soc., 2021, 143, 560-576

Förster Cube and Square Schemes

Activation Energies

Arrhenius (1889)
 $$
A \rightleftarrows B
$$

empirical rate constant equation
$\boldsymbol{k}_{\boldsymbol{f}}=A e^{-\frac{E_{a}}{R T}} \ldots$ pre-exponential factor, A, has units of $\mathrm{s}^{-1} \quad \mathrm{mkv}$

Eyring-Polanyi-Evans (1930s)
$A \rightleftarrows X^{\neq} \rightleftarrows B$
theoretical rate constant equation (from transition-state theory / activated complex theory)
$\boldsymbol{k}_{\boldsymbol{f}}=\kappa \nu K^{\neq}=\frac{\kappa k_{\mathrm{B}} T}{h} K^{\neq} \ldots$ with transmission coefficient, κ, and vibrational frequency, $v\left(\mathrm{~s}^{-1}\right)$
$\boldsymbol{k}_{\boldsymbol{f}}=\frac{\kappa k_{\mathrm{B}} T}{h} \exp \left(-\frac{\Delta G^{\neq}}{R T}\right)=\frac{\kappa k_{\mathrm{B}} T}{h} \exp \left(\frac{\Delta S^{\neq}}{R}\right) \exp \left(-\frac{\Delta H^{\neq}}{R T}\right) \ldots$ and so A contains ΔS^{\neq}
\ldots what is the largest predicted pre-exponential factor at $25^{\circ} \mathrm{C}$? $(161 \mathrm{fs})^{-1}=\left(1.61 \times 10^{-13} \mathrm{~s}\right)^{-1}$
4
-

$$
\begin{gathered}
\boldsymbol{k}_{\boldsymbol{f}}=\kappa v K^{\neq}=\frac{\kappa_{\mathrm{B}} 1}{h} K^{\neq} \ldots \text { with transmission coefficient, } \kappa \text {, and vibrational frequency, } v\left(\mathrm{~s}^{-1}\right) \\
\ldots \text { and } R=N_{A} k_{\mathrm{B}} \ldots \text { and } \frac{\kappa k_{\mathrm{B}} T}{h} \text { has units of } \mathrm{s}^{-1}
\end{gathered}
$$

$$
\boldsymbol{k}_{\boldsymbol{f}}=\frac{\kappa k_{\mathrm{B}} T}{h} \exp \left(-\frac{\Delta G^{\neq}}{R T}\right)=\frac{\kappa k_{\mathrm{B}} T}{h} \exp \left(\frac{\Delta S^{\neq}}{R}\right) \exp \left(-\frac{\Delta H^{\neq}}{R T}\right) \ldots \text { and so } A \text { contains } \Delta S^{\neq}
$$

\qquad
\qquad $\boldsymbol{k}_{\mathrm{ET}}=\frac{2 \pi}{\hbar}\left|H_{\mathrm{DA}}\right|^{2} \frac{1}{\sqrt{4 \pi \lambda_{\mathrm{AB}} k T}} \exp \left(-\frac{\Delta G_{\mathrm{AB}}{ }^{\neq}}{\boldsymbol{k} T}\right) \ldots \frac{2 \pi\left|H_{\mathrm{DA}}\right|^{2}}{\hbar \sqrt{4 \pi \lambda k T}}$ has units of s^{-1}

$$
A \rightleftarrows X^{\neq} \rightleftarrows B
$$

Eyring-Polanyi-Evans (1930s)
theoretical rate constant equation (from transition-state theory / activated complex theory)
$\boldsymbol{k}_{\boldsymbol{f}}=\kappa \nu K^{\neq}=\frac{\kappa k_{\mathrm{B}} T}{h} K^{\neq} \ldots$ with transmission coefficient, κ, and vibrational frequency, $v\left(\mathrm{~s}^{-1}\right)$ \ldots and $R=N_{A} k_{\mathrm{B}} \ldots$ and $\frac{\kappa k_{\mathrm{B}} T}{h}$ has units of s^{-1}
$\boldsymbol{k}_{\boldsymbol{f}}=\frac{\kappa k_{\mathrm{B}} T}{h} \exp \left(-\frac{\Delta G^{\neq}}{R T}\right)=\frac{\kappa k_{\mathrm{B}} T}{h} \exp \left(\frac{\Delta S^{\neq}}{R}\right) \exp \left(-\frac{\Delta H^{\neq}}{R T}\right) \ldots$ and so A contains ΔS^{\neq}
.. what is the largest predicted pre-exponential factor at $25^{\circ} \mathrm{C}$? $(161 \mathrm{fs})^{-1}=\left(1.61 \times 10^{-13} \mathbf{~ s}\right)^{-1}$

Marcus-Hush Theory

Marcus-Hush (1950s-1960s) $\quad \frac{D+A}{A} \rightleftarrows \frac{D^{+}+A^{-}}{B}$

I don't know about you, but when given a choice between classical and quantum mechanical
.. I go with classical... OK?

$$
\Delta G_{\mathrm{AB}}{ }^{\neq}=\frac{\left(\lambda_{\mathrm{AB}}+\Delta G_{\mathrm{AB}}\right)^{\circ}}{4 \lambda_{\mathrm{AB}}}
$$

wait... there is a direct relation between thermodynamics $\left(\Delta G_{A B}{ }^{\circ}\right)$ and kinetics $\left(\Delta G_{A B}{ }^{\neq}\right)$? this makes sense since $\frac{d \bar{\mu}_{A}}{d z}$ drives transport... which can be written as a chemical reaction .. but that key relationship is quadratic... meaning a parabola? Huh?!?!?!

Marcus-Hush Theory
Marcus-Hush (1950s-1960s)
$\frac{D+A}{A} \rightleftarrows \frac{D^{+}+A^{-}}{B}$
theoretical (semiclassical) rate constant equation
\qquad
\qquad
\qquad
\qquad
$\begin{aligned} & k_{\mathrm{ET}}=\frac{2 \pi}{\hbar}\left|H_{\mathrm{DA}}\right|^{2} \frac{1}{\sqrt{4 \pi \lambda_{A B} k T}} \exp \left(-\frac{\left.\left(\lambda_{\mathrm{AB}}+\Delta G_{\mathrm{AB}}\right)^{2}\right)^{2}}{4 \lambda_{A B} k T}\right) \text { what kind of function is this? } \\ & \Delta G_{A B}{ }^{*}=\frac{\left(\lambda_{A B}+\Delta G_{A B}\right)^{2}}{4 \lambda_{A B}}\end{aligned}$
$k_{\mathrm{ET}}=\frac{2 \pi}{\hbar}\left|H_{\mathrm{DA}}\right|^{2} \frac{1}{\sqrt{2 \pi} \sqrt{2 \lambda_{\mathrm{AB}} k T}} \exp \left(-\frac{1}{2}\left(\frac{\Delta G_{\mathrm{AB}}{ }^{0}-\left(-\lambda_{\mathrm{AB}}\right)}{\sqrt{2 \lambda_{\mathrm{AB}} k T}}\right)^{2}\right) \ldots$ does this help at all?

Marcus-Hush Theory $\frac{D+A}{} \rightleftarrows \frac{D^{+}+A^{-}}{B}$
Marcus-Hush (1950s-1960s) stenderd Normal Distibution A B
.. wait... the classical component in Marcus electron-transfer theory is normal distribution as a function of standard-state thermodynamic driving
force $\left(\Delta G_{A B}{ }^{\circ}\right)$?... Yep!

$$
k_{\mathrm{ET}}=\frac{2 \pi}{\hbar}\left|H_{\mathrm{DA}}\right|^{2} \frac{1}{\sqrt{2 \pi} \sqrt{2 \lambda_{\mathrm{AB}} k T}} \exp \left(-\frac{1}{2}\left(\frac{\Delta G_{\mathrm{AB}}{ }^{\mathrm{o}}-\left(-\lambda_{\mathrm{AB}}\right)}{\sqrt{2 \lambda_{\mathrm{AB}} k T}}\right)^{2}\right) \ldots \text { does this help at all? }
$$

Marcus-Hush Theory
Marcus-Hush (1950s-1960s)
$\frac{D+A}{A} \rightleftarrows \frac{D^{+}+A^{-}}{B}$
theoretical (semiclassical) rate constant equation

Marcus-Hush Theory
Marcus-Hush $(1950$ s-1960s)
$\frac{D+A}{A}$$\underset{B}{D^{+}+A^{-}}$
theoretical (semiclassical) rate constant equation

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Marcus-Hush Theory
Marcus-Hush (1950s-1960s)

Marcus-Hush Theory
Marcus-Hush (1950s-1960s)
$\frac{D+A}{A} \rightleftarrows \frac{D^{+}+A^{-}}{B}$
theoretical (semiclassical) rate constant equation

$$
k_{\mathrm{ET}}=\frac{2 \pi}{\hbar}\left|H_{\mathrm{DA}}\right|^{2} \frac{1}{\sqrt{4 \pi \lambda_{\mathrm{AB}} k T}} \exp \left(-\frac{\left(\lambda_{\mathrm{AB}}+\Delta G_{\mathrm{AB}}{ }^{\mathrm{o}}\right)^{2}}{4 \lambda_{\mathrm{AB}} k T}\right)
$$

$\xrightarrow[\text { Progress of Reaction }]{ }$

Marcus-Hush Theory
Marcus-Hush (1950s-1960s)

Marcus-Hush Theory
Marcus-Hush (1950s-1960s)
$\frac{D+A}{A} \rightleftarrows \frac{D^{+}+A^{-}}{B}$
theoretical (semiclassical) rate constant equation

Marcus-Hush Theory
Marcus-Hush (1950s-1960s)
$\frac{D+A}{A} \rightleftarrows \frac{D^{+}+A^{-}}{B}$
theoretical (semiclassical) rate constant equation

\qquad

Outer Reorganization Energy

Marcus-Hush (1950s-1960s) theoretical (semiclassical) rate constant equation

$$
\begin{gathered}
k_{\mathrm{ET}}=\frac{2 \pi}{\hbar}\left|H_{\mathrm{DA}}\right|^{2} \frac{1}{\sqrt{4 \pi \lambda_{\mathrm{AB}} k T}} \exp \left(-\frac{\Delta G_{\mathrm{AB}}^{\neq}}{k T}\right) \\
\Delta G_{\mathrm{AB}}^{\neq}=\frac{\left(\lambda_{\mathrm{AB}}+\Delta G_{\mathrm{AB}}{ }^{0}\right)^{2}}{4 \lambda_{\mathrm{AB}}}
\end{gathered}
$$

... but what causes this parabolic relationship?... . what physical expression results in a quadratic dependence on charge?
... classical electrostatics... of the solvent!
dielectric continuum model.
.$G_{\text {out }} \approx 1 \mathrm{eV}$ in water
$G_{\text {out }}$ decreases as permittivity decreases

$$
\lambda_{\text {out }}=\left(\frac{1}{2 r_{\mathrm{D}}}+\frac{1}{2 r_{\mathrm{A}}}-\frac{1}{R_{\mathrm{DA}}}\right)\left(\frac{1}{\epsilon_{\infty}}-\frac{1}{\epsilon_{\mathrm{s}}}\right)(\Delta e)^{2}
$$

Outer + Inner Reorganization Energy

Marcus-Hush (1950s-1960s)
theoretical (semiclassical) rate constant equation
This theory came about by answering the following question: For an electron-transfer event
how does one satisfy the Franck-Condon principle and the conservation of energy?

- Franck-Condon principle: Nuclei are fixed during electron-transfer between orbitals... Born-Oppenheimer approximation is relevant

More Quantum Mechanics

$$
\widehat{H} \psi_{n}(x)=(\hat{T}+\hat{V}) \psi_{n}(x)=\mathrm{E}_{n} \psi(x)
$$

Poisson's Equation (from Gauss's law) you still didn't tell us why we need to recall this equation
\ldots we need to fill internal energies, E_{n}, with particles... okay. for a point charge... $\begin{gathered}\text { look familiar? }\end{gathered}, \quad \phi(r)=\frac{q}{4 \pi \varepsilon r}$
.. and that under most chemical conditions, potential energy, $\hat{V}(x)$, is electrostatic, $\phi(x)$.. which is actually not so limiting because there are only 4-ish forces of Nature ... and while we're at it, let's (re)learn overlap integral ($S_{n m}$), expectation value ($\left\langle p_{n}\right\rangle$), bra-
ket notation $\left(\left\langle\psi_{n} \mid \psi_{m}\right\rangle\right)$, and exponential tunneling probability...
Probability Density $(x)=\left|\psi_{n}(x)\right|^{2}=\psi_{n}^{*}(x) \psi_{n}(x)$ \ldots with $\psi_{n}^{*}(x)$ (complex conjugate)
Overlap integral, $S_{n m}=\int_{-\infty}^{\infty} \psi_{n}^{*}(x) \psi_{m}(x) d x=\left\langle\psi_{n} \mid \psi_{m}\right\rangle$... with $\left\langle\Psi_{n}\right|$ ("bra") and $\left|\Psi_{m}\right\rangle$ ("ket")
Mean Energy, $\left\langle\mathrm{E}_{n}\right\rangle=\frac{\int_{-\infty}^{\infty} \Psi_{n}^{*}(x, t) \hat{H} \Psi_{n}(x, t) d x}{\int_{-\infty}^{\infty} \Psi_{n}^{*}(x, t) \Psi_{n}(x, t) d x}=\left\langle\Psi_{n}\right| \hat{H}\left|\Psi_{n}\right\rangle=\langle\hat{H}\rangle$

Molecular Orbital Theory

Marcus-Hush (1950s-1960s)

$$
k_{\mathrm{ET}}=\frac{2 \pi}{\frac{2 \pi}{\hbar}\left|H_{\mathrm{DA}}\right|^{2} \frac{1}{\sqrt{4 \pi \lambda_{\mathrm{AB}} k T}} \exp \left(-\frac{\Delta G_{\mathrm{AB}}{ }^{\neq}}{k T}\right)}
$$... remember the simplicity of $\mathrm{H}_{2}{ }^{+}$.. which resembles $\lambda_{\text {out }}$ math

Observation of Inverted Region Behavior

Marcus-Hush (1950s-1960s) theoretical (semiclassical) rate constant equation

Foreshadowing...

Closs-Miller (1984)
observation of inverted region

Molecular Orbital Theory linear combination of atomic orbitals

 ... which equals ($E_{+}-E$) from MO Theory .
\qquad

Linear Free Energy Relationships (LFERs)

Marcus Kinetic Behavior
Table 13 Applications of the Marcus relation

Electron transfers	Electrochemical	Tafel Law Electrode kinetics at semiconductors
	Homogeneous	Correlation with electrochemical Cross reactions obey Marcus relation (Eq. 4)
Proton transters	Marcus relation reduces O, N bases and some transfers to C Concerted reactions	to Bronsted Law Explains curved Bronsted plots Describes enolization of acetone
Methyl transfers	Cross reactions obey Marcus relation Swain-Scott n separated into n^{2} and n^{6} αD isotope effects measure C^{+}character	
Nucleophilic additions	Provides alternative explanation to Ritchie relation Values of \bar{G} found to be constant for similar species	

Chemical Kinetics (summary for today)

- Continuity of mass, Mass transfer, Nernst-Planck equation, Diffusion, Diffusion coefficient, Migration, Mobility, Convection, Boundary layer
- Mass action, Microscopic reversibility, Förster cube, Square schemes, Rate constants, Activation energies, Transition-state theory, MarcusHush theory, Transition-state character, Reorganization energies (outer and inner)
- Linear free energy relationships, Charge transfer across electrified interfaces, Butler-Volmer equation, Fermi's golden rule, Solid-state physics, Marcus-Gerischer theory
- Rate-determining step, Steady-state \& Pre-equilibrium approximations, Langmuir/Frumkin isotherms

