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Summary of Key Equations and Equilibrium
327

𝑅A,𝑓 = −𝒌𝒇𝑎A

𝑅A,𝑏 = +𝒌𝒃𝑎B

𝒌𝒋 (M/s)… a rate!

A B

𝑅B,𝑓 = +𝒌𝒇𝑎A

𝑅B,𝑏 = −𝒌𝒃𝑎B

𝜕𝑐A,𝑧o
𝜕𝑡

=
𝑗
𝑅A,𝑗

(Chemists should be yawning)

ഥ𝝁𝑩
𝜶 − ഥ𝝁𝑨

𝜶 = 𝚫𝑮𝜶 = 𝚫𝑮𝐨,𝜶 + 𝑹𝑻 𝐥𝐧𝑸… where 𝑄 =
𝑎B
𝛼

𝑎A
𝛼 =

𝛾B
𝛼 𝑐B

𝛼/𝑐B
o,𝛼

𝛾A
𝛼 𝑐A

𝛼/𝑐A
o,𝛼

Now, consider the reaction to be at equilibrium (3 ways)… 𝚫𝑮𝜶 = 𝟎 = Δ𝐺o,𝛼 + 𝑅𝑇 ln𝑄

… and so, Δ𝐺o,𝛼 = −𝑅𝑇 ln𝐾, with 𝐾 =
𝑎B,eq
𝛼

𝑎A,eq
𝛼 =

𝛾B
𝛼 𝑐B,eq

𝛼 /𝑐B
o,𝛼

𝛾A
𝛼 𝑐A,eq

𝛼 /𝑐A
o,𝛼

And also, ഥ𝝁𝐁
𝜶 − ഥ𝝁𝐀

𝜶 = 𝟎… and so, ҧ𝜇A
𝛼 = ҧ𝜇B

𝛼… if that is even helpful

And also, 
𝝏𝒄𝐀,𝒛𝐨

𝜶

𝝏𝒕
= 𝟎 = −

𝝏𝒄𝐁,𝒛𝐨
𝜶

𝝏𝒕
= −𝒌𝒇𝑎A,eq

𝛼 + 𝒌𝒃𝑎B,eq
𝛼 … and so 

𝒌𝒇

𝒌𝒃
=

𝑎B,eq
𝛼

𝑎A,eq
𝛼 =

𝛾B
𝛼 𝑐B,eq

𝛼 /𝑐B
o,𝛼

𝛾A
𝛼 𝑐A,eq

𝛼 /𝑐A
o,𝛼 = 𝐾

𝜕𝑐A,𝑧o
𝛼

𝜕𝑡
= −𝒌𝒇𝑎A

𝛼 + 𝒌𝒃𝑎B
𝛼 = −𝒌𝒇

′ 𝑐A
𝛼 + 𝒌𝒃

′ 𝑐B
𝛼 = −

𝜕𝑐B,𝑧o
𝛼

𝜕𝑡
ഥ𝝁𝒊
𝜶 =

𝝏𝑮𝜶

𝝏𝒏𝒊
𝜶

𝑻,𝒑,𝒏𝒋≠𝒊
𝜶

𝒌𝒋
′ (s-1)… an inverse time constant!



BA

1-

1-

Transport as a Chemical Reaction
328

𝜕𝑐A,𝑧o
𝜕𝑡

=
𝑗
𝑅A,𝑗 −

𝜕𝐍A

𝜕𝑧

𝑹𝐀 = −𝑘𝑓𝒄𝐀𝒛𝟏
+ 𝑘𝑏𝒄𝐀𝒛𝟐

= 𝒌𝒃 − 𝒌𝒇 𝒄𝐀𝒛𝟏
+ 𝒌𝒃∆𝒄𝐀

𝐍𝐀 = −
𝐷A
𝑅𝑇

𝜕 ҧ𝜇A
𝜕𝑧

𝒄𝐀 = −
𝐷A
𝑅𝑇

𝑅𝑇

𝒄𝐀

𝑑𝒄𝐀
𝑑𝑧

+
𝑑𝜇A

o

𝑑𝑧
− 𝑅𝑇

𝑑 ln 𝛾

𝑑𝑧
− 𝑅𝑇

𝑑 ln 𝑐A
o

𝑑𝑧
− 𝐹

𝑑ɸ

𝑑𝑧
𝒄𝐀

= −𝐷A
𝑑𝒄𝐀
𝑑𝑧

+
−𝐷A𝐹𝐄′

𝑅𝑇
𝒄𝐀 ≈ −

𝐷A
𝑙
∆𝒄𝐀 +

−𝐷A𝐹𝐄′

𝑅𝑇
𝒄𝐀

−
𝝏𝐍𝐀

𝝏𝒛
≈
𝑫𝐀

𝒍𝟐
∆𝒄𝐀 +

𝑫𝐀𝑭𝐄
′

𝑹𝑻𝒍
𝒄𝐀 = "𝒌𝒃"∆𝒄𝐀 + " 𝒌𝒃 − 𝒌𝒇 "𝒄𝐀

A–
z1

A–
z2

Progress of Reaction

∆𝑮𝐀𝐁
𝐨

B

A
… where 𝐄′ is an effective force field

… where 𝒄𝐀𝒛𝟐
= 𝒄𝐀𝒛𝟏

+ ∆𝒄𝐀

… what is 𝑫𝐀 again?

… in a reaction "volume" zo…
… that encompasses z1 and z2

… since the reaction volume is >1 Å3 , 𝑙 > 1 Å… and D(aq) < 10-4 cm2/s… kD(aq) < 1012 s-1 = (>1 ps)-1

(diffusion) (drift)
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Chemical Kinetics

• Continuity of mass, Mass transfer, Nernst–Planck equation, Diffusion, 
Diffusion coefficient, Migration, Mobility, Convection, Boundary layer

• Mass action, Microscopic reversibility, Förster cube, Square schemes, 
Rate constants, Activation energies, Transition-state theory, Marcus–
Hush theory, Transition-state character, Reorganization energies 
(outer and inner)

• Linear free energy relationships, Charge transfer across electrified 
interfaces, Butler–Volmer equation, Fermi’s golden rule, Solid-state 
physics, Marcus–Gerischer theory

• Rate-determining step, Steady-state & Pre-equilibrium 
approximations, Langmuir/Frumkin isotherms

330



z = zoz < zo z > zo

2A

ഥ𝝁𝒊
𝜶 = ഥ𝝁𝒊

𝐨,𝜶 + 𝑹𝑻 𝐥𝐧𝒂𝒊
𝜶 + 𝒛𝒊𝒒𝝓

𝜶

𝐻𝛹𝑛 𝑧, 𝑡 = 𝑖ℏ
𝜕

𝜕𝑡
𝛹𝑛 𝑧, 𝑡

Continuity of Mass
331

“Jean Piaget, the Swiss psychologist who first studied object permanence in infants, argued that it is one of an infant's 
most important accomplishments, as, without this concept, objects would have no separate, permanent existence.”

– Wiki, Object permanence

𝜕𝑐A,𝑧o
𝜕𝑡

=
𝑗
𝑅A,𝑗 −

𝜕𝐍A

𝜕𝑧

Note: Adjusting just one 
variable is difficult… but 
people, like us, can try

(REVIEW)



Thermodynamics versus Kinetics
332

Thermodynamics are only as important as their influence on kinetics…

… energetics from thermodynamics dictate equilibrium concentrations…

… but it is the kinetic (and transport) properties that influence how those conditions 
change upon perturbation…

rate of change of the 
(c)oncentration of 

species A with respect 
to (t)ime, in units of 
M s-1 (mol dm-3 s-1)

mass action (R)ate laws 
that effect species A,

e.g. RA = k3aBaD
2 ≈ k3[B][D]2

(to a first order, this is driven by 
differences in chemical potential

of various species, 𝜇𝑗)

rate of change of the molar 
flux (N) of species A with 

respect to position (z),

e.g. NA = –D 
𝝏𝒂𝐀

𝝏𝒛
(to a first order, this is driven by 
differences in electrochemical 

potential of a single species, ҧ𝜇𝑖)

𝜕𝑐A,𝑧o
𝜕𝑡

=
𝑗
𝑅A,𝑗 −

𝜕𝐍A

𝜕𝑧

... this master equation describes all kinetic and transport processes for mass… more on this later…

(REVIEW)



1D Transport in Liquids (solids are simpler)
333

𝐍A = −
𝐷A𝑐A
𝑅𝑇

𝜕 ҧ𝜇A
𝜕𝑧

+ 𝑣𝑐A

… there are many driving forces for flux of species…
… convection (𝑣𝑐) is just one (e.g., dT/dx)

Group terms… then mass transfer resembles mass action (assume 𝑣 = 0 for simplicity)…

𝐍A = −𝑫𝐀

𝝏 ൗഥ𝝁𝐀
𝑹𝑻

𝝏𝒛
𝑐A BOLD ((cm2/s) / cm) = cm/s… a velocity!

… and with 
𝜕

𝜕𝑧
, units are s-1… an inverse time constant!

Az1
Az2

(Note that… 𝑅A,total = −𝒌𝒇
′ 𝑐A + 𝒌𝒃

′ 𝑐B… with 𝒌𝒋
′ (s-1), an inverse time constant!)

What are the directions for the dimensions of 𝑫𝐀?

(MechEs should be yawning)

𝜕𝑐A,𝑧o
𝜕𝑡

= −
𝜕𝐍A

𝜕𝑧

… and that equals zero at steady state

(REVIEW)



1D Transport in Solids (liquids are "harder")
334

Let’s expand 
the total 
differential… Flux𝑧,𝑒 = −

𝐷𝑒𝒏𝑒
𝑘𝑻𝑒

𝑑𝝁𝑒
𝑑𝑧

− 𝑞
𝑑ɸ

𝑑𝑧
− 𝑆𝑒,𝑻𝑒

𝑑𝑻𝑒
𝑑𝑧

Flux𝑧,𝑒 = −
𝜎𝑒
𝐹2

𝑑ഥ𝝁𝑒
𝑑𝑧

− 𝑆𝑒,𝑻𝑒
𝑑𝑻𝑒
𝑑𝑧

Flux𝑧,𝑒 = −𝐷𝑒
𝑑𝒏𝑒
𝑑𝑧

+
𝑞𝐷𝑒𝒏𝑒
𝑘𝑻𝑒

𝑑ɸ

𝑑𝑧

Flux𝑧,𝑒 = −𝐷𝑒
𝒏𝑒
𝑘𝑻𝑒

𝑑𝝁𝑒
𝐨

𝑑𝑧
+
𝒏𝑒
𝜸𝑒

𝑑𝜸𝑒
𝑑𝑧

+
𝑑𝒏𝑒
𝑑𝑧

−
𝒏𝑒
𝒏𝑒
𝐨

𝑑𝒏𝑒
𝐨

𝑑𝑧
+
𝒏𝑒
𝑻𝑒

ln 𝜸𝑒𝒏𝑒
𝒏𝑒
𝐨

𝑑𝑻𝑒
𝑑𝑧

−
𝑞𝒏𝑒
𝑘𝑻𝑒

𝑑ɸ

𝑑𝑧
− 𝑆𝑒,𝑻𝑒

𝑑𝑻𝑒
𝑑𝑧

Flux𝑧,𝑒 = −
𝐷𝑒𝒏𝑒
𝑘𝑻𝑒

𝑑𝝁𝒆
𝐨

𝑑𝑧
+
𝑘𝑻𝑒
𝜸𝑒

𝑑𝜸𝑒
𝑑𝑧

+
𝑘𝑻𝑒
𝒏𝑒

𝑑𝒏𝑒
𝑑𝑧

−
𝑘𝑻𝑒
𝒏𝑒
𝐨

𝑑𝒏𝑒
𝐨

𝑑𝑧
+ 𝑘 ln 𝜸𝑒𝒏𝑒

𝒏𝑒
𝐨

𝑑𝑻𝑒
𝑑𝑧

− 𝑞
𝑑ɸ

𝑑𝑧
− 𝑆𝑒,𝑻𝑒

𝑑𝑻𝑒
𝑑𝑧

𝝏𝑮

𝝏𝒏𝒊 𝑻,𝒑,𝒏𝒋≠𝒊

= ഥ𝝁𝒊 = 𝝁𝒊 + 𝑧𝑖𝑞ɸ

𝝁𝒊 = 𝝁𝒊
𝐨 + 𝑘𝑻𝒊 ln 𝒂𝒊 = 𝝁𝒊

𝐨 + 𝑘𝑻𝒊 ln
𝜸𝒊𝒏𝒊
𝒏𝒊
𝐨

… assuming spatially invariant 𝝁𝑒
𝐨, 𝜸𝑒, 𝒏𝑒

𝐨, 𝑻𝑒

Drift–Diffusion 
equation

Flux𝑧,𝑒 = −𝐷𝑒𝒏𝑒
𝑑𝝁𝑒

𝐨

𝑘𝑻𝑒 𝑑𝑧
+
𝑑 ln𝜸𝑒

𝑑𝑧
+
𝑑 ln𝒏𝑒

𝑑𝑧
−
𝑑 ln𝒏𝑒

𝐨

𝑑𝑧
−
𝑑 𝑞ɸ

𝑘𝑻𝑒 𝑑𝑧
− 𝑫𝒏𝑒,𝜸𝑒,𝒏𝑒

𝐨,𝑻𝑒

𝑑𝑻𝑒
𝑑𝑧

… assuming a 
species, 𝑒, with 
valency, 𝑧𝑒, equal 
to –1

… other species 
may have different 
values for every 
term, except ɸ

(REVIEW)
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Outer Reorganization Energy
335

Marcus–Hush (1950s–1960s)
theoretical (semiclassical) rate constant equation

… but what causes this parabolic relationship?…
… what physical expression results in a quadratic 
dependence on charge?
… classical electrostatics… of the solvent!
… dielectric continuum model…

… Gout ≈ 1 eV in water
… Gout decreases as permittivity decreases

𝜆out =
1

2𝑟D
+

1

2𝑟A
−

1

𝑅DA

1

𝜖∞
−
1

𝜖s
Δ𝑒 2

3+

2+

∆𝑮𝐀𝐁
≠ =

𝝀𝐀𝐁 + ∆𝑮𝐀𝐁
𝐨 𝟐

𝟒𝝀𝐀𝐁

𝒌𝐄𝐓 =
𝟐𝝅

ℏ
𝑯𝐃𝐀

𝟐
𝟏

𝟒𝝅𝝀𝐀𝐁𝒌𝑻
𝐞𝐱𝐩 −

∆𝑮𝐀𝐁
≠

𝒌𝑻

𝝀𝐀𝐁,out

4

(REVIEW)



Outer + Inner Reorganization Energy
336

Marcus–Hush (1950s–1960s)
theoretical (semiclassical) rate constant equation

This theory came about by answering the following question: For an electron-transfer event, 
how does one satisfy the Franck–Condon principle and the conservation of energy?

• Franck–Condon principle: Nuclei are fixed during electron-transfer between orbitals… Born–Oppenheimer 
approximation is relevant

𝜆AB = 𝜆in + 𝜆out

P. Chen & T. J. Meyer, Chem. Rev., 1998, 98, 1439–1477

… this is for a harmonic oscillator
… with force constants, fl…

… and yes, it’s another parabola!

N. Sutin, Acc. Chem. Res., 1982, 15, 275–282

𝜆AB =

… this 2HAB mixing is like what we 
learned for molecular orbital theory!

(REVIEW)



More Quantum Mechanics
337

But you still didn’t tell us why we need to recall this equation
𝐻𝜓𝑛 𝑥 = 𝑇 + 𝑉 𝜓𝑛 𝑥 = E𝑛ψ 𝑥

… we need to fill internal energies, E𝑛, with particles… okay.

… and that under most chemical conditions, potential energy, 𝑉 𝑥 , is electrostatic, 𝜙 𝑥
… which is actually not so limiting because there are only 4-ish forces of Nature
… and while we’re at it, let’s (re)learn overlap integral (𝑆𝑛𝑚), expectation value ( 𝑝𝑛 ), bra–ket
notation ( 𝜓𝑛 𝜓𝑚 ), and exponential tunneling probability…

Probability Density 𝑥 = 𝜓𝑛 𝑥 2 = 𝜓𝑛
∗ 𝑥 𝜓𝑛 𝑥

… with 𝜓𝑛
∗ 𝑥 (complex conjugate)

Overlap integral, 𝑆𝑛𝑚 = ∞−
∞
𝜓𝑛
∗ 𝑥 𝜓𝑚 𝑥 𝑑𝑥 = 𝜓𝑛 𝜓𝑚

… with ۦ ȁ𝛹𝑛 ("bra") and ൿห𝛹𝑚 ("ket")

Mean Energy, E𝑛 =
∞−
∞

𝛹𝑛
∗ 𝑥,𝑡 𝐻𝛹𝑛 𝑥,𝑡 𝑑𝑥

∞−
∞

𝛹𝑛
∗ 𝑥,𝑡 𝛹𝑛 𝑥,𝑡 𝑑𝑥

= 𝛹𝑛 𝐻 𝛹𝑛 = 𝐻

𝐄 = −
𝜕𝜙 𝑥

𝜕𝑥

Poisson’s Equation (from Gauss’s law)

𝜕2𝜙 𝑥

𝜕𝑥2
= −

ρ

𝜀

𝜙 𝑟 =
𝑞

4𝜋𝜀𝑟for a point charge…
look familiar?

https://en.wikipedia.org/wiki/Quantum_tunnelling#/media/File:E14-V20-B1.gif
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Molecular Orbital Theory
338

Molecular Orbital Theory
linear combination of atomic orbitals

Marcus–Hush (1950s–1960s)
theoretical (semiclassical) rate constant equation

quantum adiabatic 
electronic coupling

classical nuclear free-
energy dependence

𝒌𝐄𝐓 =
𝟐𝝅

ℏ
𝑯𝐃𝐀

𝟐
𝟏

𝟒𝝅𝝀𝐀𝐁𝒌𝑻
𝐞𝐱𝐩 −

∆𝑮𝐀𝐁
≠

𝒌𝑻

… remember the simplicity of H2
+… which resembles λout math

… which equals (E+ – E–) from MO Theory

M. D. Newton, Int. J. Quantum. Chem., 1980, 18, 363–391
N. Sutin, Acc. Chem. Res., 1982, 15, 275–282



Observation of Inverted Region Behavior
339

Closs–Miller (1984)
observation of inverted region

Marcus–Hush (1950s–1960s)
theoretical (semiclassical) rate constant equation

Eapp-1

Eapp-2

Eapp-3

Foreshadowing…

L. T. Calcaterra, J. R. Miller & G. L. Closs, J. Am. Chem. Soc., 1984, 106, 3047–3049
G. L. Closs & J. R. Miller, Science, 1988, 240, 440–447

(REVIEW)



𝝀𝐀𝐁

−∆𝑮𝐀𝐁
𝐨

0

ln 𝒌𝐄𝐓

Linear Free Energy Relationships (LFERs)
340

Brønsted–Pedersen (1924)
empirical LFER for proton transfer

ln 𝑘PT = 𝜷 Δp𝐾a + 𝐶′

Brønsted slope…
… most people use 𝛼…
… but I prefer 𝛽

… like in EChem
𝛽' = 0.5/𝑘B𝑇

𝛽' < 0.5/𝑘B𝑇

𝛽' > 0.5/𝑘B𝑇

ln 𝑘PT = −𝜷 p𝐾a + 𝐶

J. Albery, Ann. Rev. Phys. Chem., 1980, 31, 227–263
R. A. Marcus, Farad. Discuss. Chem. Soc., 1982, 74, 7–15

Marcus–Hush (1950s–1960s)
theoretical (semiclassical) rate constant equation

… trend looks linear over a small enough ∆𝐺AB
o range

𝜷′ =
𝝀𝐀𝐁 + ∆𝑮𝐀𝐁

𝐨

𝟐𝝀𝐀𝐁𝒌𝐁𝑻

… this is just Albery’s Equation 8



Marcus Kinetic Behavior
341

J. Albery, Ann. Rev. Phys. Chem., 1980, 31, 227–263
R. A. Marcus, Farad. Discuss. Chem. Soc., 1982, 74, 7–15



Charge Transfer across Electrified Interfaces
342

O R

𝑅O =
𝜕𝑐O,𝑧o
𝜕𝑡

= −𝒌𝒇𝑐O + 𝒌𝒃𝑐R 𝑗𝐸 = 𝑛𝐹 −𝒌′𝒇,𝑬𝑐O,𝑧o + 𝒌′𝒃,𝑬𝑐R,𝑧o
… 𝑅O is a rate… with units of M/s (= mol dm-3 s-1)

… 𝒌𝒋 (s-1) is an inverse time constant!
… 𝑗𝐸 is a current density… with units of A/cm2 (= C cm-2 s-1)

… 𝒌′𝒋,𝑬 (cm s-1) is a velocity!

… this suggests that we will replace 𝒌′𝒋,𝑬 velocity rate constants…

… with thermodynamic driving force terms!… But how?… M–H!

But how does this lead to the Butler–Volmer eqn?…

… as a specific case choose 𝑬𝐨′… and thus, 𝑗𝐸o′ = 𝑛𝐹 −𝒌′𝒇,𝑬𝐨′𝑐O,𝑧o + 𝒌′𝒃,𝑬𝐨′𝑐R,𝑧o

0 = 𝑗𝐸o′ = 𝑛𝐹 −𝒌′𝒇,𝑬𝐨′ + 𝒌′𝒃,𝑬𝐨′

𝒌′𝒇,𝑬𝒐′ = 𝒌′𝒃,𝑬𝒐′ = 𝒌𝟎

e–,M +

𝑗𝐸 = 𝒋𝐨 exp
1 − 𝜷 𝐹𝜼

𝑅𝑇
− exp

−𝜷𝐹𝜼

𝑅𝑇

FYI: For each cO and cR, electrochemical 
equilibrium (𝑗 = 0) is attained via 

interfacial charge transfer to alter ΔφM|s

𝜼 = 𝑬 − 𝑬𝐞𝐪 = 𝑬𝐚𝐩𝐩 =
Δ𝐺o

−𝑛𝐹

… aren’t these so-called “heterogeneous 
electron-transfer reactions”?… Sure.

… where 𝜼 (V) is overpotential



Bard & Faulkner, Chapter 3, Figure 3.3.2, Page 95
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O R

𝒌′𝒇,𝑬𝒐′ = 𝒌′𝒃,𝑬𝒐′ = 𝒌𝟎

e–,M +

* analogous conditions to a self-
exchange reaction (kf = kb) for 

homogeneous electron transfer

At an applied potential 
bias equal to (E – Eo'), a 
net current results… in 

which direction?

Key Electrochemical Information
• In electrochemistry, application of a 

potential, 𝐸app, varies the electro-

chemical potential of electrons (e–) in 
the (M)etal working electrode, ҧ𝜇𝑒

M

• Based on thermodynamics, when 
written as a reduction reaction, 
changing ҧ𝜇𝑒

M alters the free energy 
(and one assumes also the standard-
state free energy) of the reactants, as 
Δ𝐺A = ҧ𝜇𝑒

M + ҧ𝜇O (and 𝚫𝑮𝐀
𝐨 = ഥ𝝁𝒆

𝐌 + ഥ𝝁𝐎
𝐨 )

• The derivation here assumes that the 
electrode is inert, e.g. not like battery 
electrodes



𝛽

𝛽𝒌′𝒇,𝑬𝒐′ = 𝒌′𝒃,𝑬𝒐′ = 𝒌𝟎

𝜷 + 1 − 𝜷 = 𝟏

𝑭𝑬𝐚𝐩𝐩

Bard & Faulkner, Chapter 3, Figure 3.3.2, Page 95
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O Re–,M +Key Electrochemical Information
• In electrochemistry, application of a 

potential, 𝐸app, varies the electro-

chemical potential of electrons (e–) in 
the (M)etal working electrode, ҧ𝜇𝑒

M

• Based on thermodynamics, when 
written as a reduction reaction, 
changing ҧ𝜇𝑒

M alters the free energy 
(and one assumes also the standard-
state free energy) of the reactants, as 
Δ𝐺A = ҧ𝜇𝑒

M + ҧ𝜇O (and 𝚫𝑮𝐀
𝐨 = ഥ𝝁𝒆

𝐌 + ഥ𝝁𝐎
𝐨 )

• Based on approximations, altering Δ𝐺A
changes all Δ𝐺 values on the reaction 
coordinate relative to Δ𝐺A, and not the 
parabolic/linear shape of the reactant 
"surface“… Should it?

… sadly, B–V theory is based on the 
LFER approximation only
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TScath
−1 =

𝑑 log 𝑗𝐸
𝑑 𝜼

cath

=
−𝜷𝐹

2.303𝑅𝑇

O R

𝑗𝐸 = 𝑛𝐹 𝒌′𝒃,𝑬𝑐R,𝑧o − 𝒌′𝒇,𝑬𝑐O,𝑧o

𝑗𝐸 = 𝐹𝒌𝟎 𝑐R,𝑧o exp
1 − 𝜷 𝐹 𝐸 − 𝐸o′

𝑅𝑇
− 𝑐O,𝑧o exp

−𝜷𝐹 𝐸 − 𝐸o′

𝑅𝑇

𝑗𝐸 = 𝒋𝐨
𝑐R,𝑧o
𝑐R
∗ exp

1 − 𝜷 𝐹𝜼

𝑅𝑇
−
𝑐O,𝑧o
𝑐O
∗ exp

−𝜷𝐹𝜼

𝑅𝑇

𝑗𝐸 = 𝒋𝐨 exp
1 − 𝛽 𝐹𝜼

𝑅𝑇
− exp

−𝛽𝐹𝜼

𝑅𝑇

𝜼 = 𝑬 − 𝑬𝐞𝐪 = 𝑬𝐚𝐩𝐩

𝒋𝐨 = 𝐹𝒌𝟎𝑐R
∗𝛽𝑐O

∗ 1−𝛽

… for this example, let’s assume that 𝑛 = 1…

TSan
−1 =

𝑑 log 𝑗𝐸
𝑑𝜼

an

=
1 − 𝜷 𝐹

2.303𝑅𝑇

e–,M +

Current–Potential 
Characteristic

Current–
Overpotential 

Equation

Butler–
Volmer 

Equation Tafel 
Slopes… assuming one rapidly stirs

… 𝑐∗ means bulk concentration… conversion is trivial using 𝑬𝐞𝐪 = 𝐸o′ −
𝑅𝑇

𝑛𝐹
ln

𝑐R
∗

𝑐O
∗
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Bard & Faulkner, Chapter 3, Figure 3.4.2, Page 101
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… let’s examine effects of 𝒋𝐨 (or 𝒌𝟎)…

Bard & Faulkner, Chapter 3, Figure 3.3.1, Page 93

… recall that… 𝜼 = 𝑬 − 𝑬𝐞𝐪 = 𝑬𝐚𝐩𝐩 =
Δ𝐺o

−𝑛𝐹

… here is anodic…
… oxidation…
… 𝜂 > 0, 𝑗𝜂 > 0

… here is cathodic…
… reduction…
… 𝜂 < 0, 𝑗𝜂 < 0



𝜷 = 𝟎. 𝟓

𝜷 > 𝟎. 𝟓

𝜷 < 𝟎. 𝟓

-200           -150            -100             -50 50              100             150             200

Bard & Faulkner, Chapter 3, Figure 3.4.3, Page 101
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… let’s examine effects of 𝜷 (or Tafel slope)…

Bard & Faulkner, Chapter 3, Figure 3.3.4, Page 97

Which LFER condition on 
the right corresponds to 
which graph on the left?

… recall that… 𝜼 = 𝑬 − 𝑬𝐞𝐪 = 𝑬𝐚𝐩𝐩 =
Δ𝐺o

−𝑛𝐹
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… let’s examine the tradeoff of 𝒋𝐨 and Tafel Slope…
… the latter has units of mV/decade…

… wait, didn’t Marcus teach us this should be a parabola?
… then, why is this "potential relationship" so linear?

Quick Quiz: Which catalyst is best?
(A) 𝒋𝐨 = 10-4 A cm-2, TS = 120 mV decade-1

(B) 𝒋𝐨 = 10-7 A cm-2, TS = 60 mV decade-1

Well, it depends on the desired 𝑗𝐸…

For 1 mA cm-2, (A) is best, but…

For 1 A cm-2, (B) is best…
… because catalyst (A) requires 𝜼 = 480 mV,
while catalyst (B) requires 𝜼 = 420 mV!

… and neither may be “best” in practice, if 
they aren’t stable or selective for the 
reaction of interest!

Take-home point: Each current density has 
a corresponding overpotential!

-200           -150            -100             -50 50              100            150             200

𝜷 𝜷
(Tafel Slope)-1 (Tafel Slope)-1

Bard & Faulkner, Chapter 3, Figure 3.4.4, Page 103
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Fermi’s (Second) Golden Rule
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𝑗𝐸,obs = 𝑛𝐹 −𝒌′𝒇,𝑬,𝐨𝐛𝐬𝑐O,𝑧o + 𝒌′𝒃,𝑬,𝐨𝐛𝐬𝑐R,𝑧o

𝑗𝐸 = 𝑛𝐹 −𝒌′𝒇,𝑬𝑐O,𝑧o + 𝒌′𝒃,𝑬𝑐R,𝑧o

𝒌′𝒋 (cm s-1)… a velocity!

… divide the DoS by 𝒄𝒊,𝒛𝐨…

𝒌′𝒃,𝑬,𝐨𝐛𝐬 = න
−∞

∞

𝒌′𝒃,𝐄 𝑑𝐄𝒌′𝒇,𝑬,𝐨𝐛𝐬 = න
−∞

∞

𝒌′𝒇,𝐄 𝑑𝐄

𝑬 = 𝐄F,e− = ҧ𝜇e−

frequency factor (s-1)

proportionality function (cm3 eV)

ҧ𝜇e−

𝜇e−
o

(DoS)

Recall M–H… 𝒌𝐄𝐓 =
𝟐𝝅

ℏ
𝑯𝐃𝐀

𝟐 𝟏

𝟒𝝅𝝀𝐀𝐁𝒌𝑻
𝐞𝐱𝐩 −

∆𝑮𝐀𝐁
≠

𝒌𝑻

ҧ𝜇e−

applied potential

energy
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𝐄F,e− = 𝐄F,h+

𝐄F,e− = 𝐄F,h+

𝐄F,h+

𝐄F,e−

W. Shockley, The Bell System Technical Journal, 1949, 28, 435–489

ECB

EVB

SiCB(h+) + SiVB(e–) SiCB(e–) + SiVB(h+)

𝐄F,e− = ҧ𝜇e−

𝐄F,h+ = − ҧ𝜇h+

At equilibrium,

ҧ𝜇CB h+
Si + ҧ𝜇VB e−

Si = ҧ𝜇CB e−
Si + ҧ𝜇VB h+

Si

As reference states, it is useful to define

ҧ𝜇CB h+
Si = ҧ𝜇VB e−

Si = 0

… you can define up to one more ҧ𝜇𝑖
Si, but 

the last ҧ𝜇𝑖
Si has to be defined based on 

calorimetry data

ҧ𝜇CB e−
Si,o

− ҧ𝜇
VB h+
Si,o

ҧ𝜇CB e−
Si = − ҧ𝜇VB h+

Si

ҧ𝜇CB e−
Si = − ҧ𝜇VB h+

Si

ҧ𝜇CB e−
Si

− ҧ𝜇VB h+
Si

Ugh, let’s flip this

Anyway… therefore,

ҧ𝜇CB e−
Si = − ҧ𝜇VB h+

Si

𝐄F,e− = 𝐄F,h+

ഥ𝝁𝒊
𝜶 =

𝝏𝑮

𝝏𝒏𝒊 𝑻,𝒑,𝒏𝒋≠𝒊



ρ(E)

Molecule StatesMetal States

(DO & DR have units of cm-3 eV-1)

(Nocc & Nunocc have units of cm-2 eV-1)

Fermi–Dirac distribution…

"Marcus" distribution…

Bard & Faulkner, Chapter 3, Figure 3.6.4, Page 124

Marcus–Gerischer Theory
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න
−∞

∞

𝑑𝑬

ET rate is proportional to

N N DD –



Marcus–Gerischer Theory
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𝒌𝐄𝐓 =
𝟐𝝅

ℏ
𝑯𝐃𝐀

𝐨 𝟐
𝒆−𝟐𝜷 𝒛𝐃𝐀−𝒛𝐃𝐀

𝐨 𝟏

𝟒𝝅𝝀𝐀𝐁𝒌𝑻
𝐞𝐱𝐩 −

𝝀𝐀𝐁 + ∆𝑮𝐀𝐁
𝐨 𝟐

𝟒𝝀𝐀𝐁𝒌𝑻

… as an aside… why 
is the data biphasic 
for the Current?

… RC-circuit double 
layer charging… 
followed by 1st-
order ET kinetics

quantum adiabatic electronic coupling
classical nuclear free-energy dependence

C. E. D. Chidsey, Science, 1991, 251, 919–922
H. D. Sikes, J. F. Smalley, S. P. Dudek, A. R. Cook, M. D. Newton, C. E. D. Chidsey & S. W. Feldberg, Science, 2001, 291, 1519–1523

𝒛𝐃𝐀 − 𝒛𝐃𝐀
𝐨



λλ

λ = 0.85 eV
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353

normal

𝑬𝐚𝐩𝐩

C. E. D. Chidsey, Science, 1991, 251, 919–922
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λλ

λ = 0.85 eV

C. E. D. Chidsey, Science, 1991, 251, 919–922

normalbarrierless

𝑬𝐚𝐩𝐩
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• It is easy to sweep/vary the driving 
force, ΔGAB, by simply changing the 
electrochemical potential of electrons 
(e–) in the (M)etal working electrode, 
ҧ𝜇𝑒
M, through variations in 𝐸app

• But evidence of the inverted region is 
a little challenging to clearly observe

… what if Chidsey had plotted the 
derivative of his data on the right?

… what do you expect that would have 
looked like?

… I wish he had done that!

λλ

λ = 0.85 eV

C. E. D. Chidsey, Science, 1991, 251, 919–922

inverted

𝑬𝐚𝐩𝐩

… a nice Marcus parabola!
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𝜷 𝜷(Tafel Slope)-1 (Tafel Slope)-1

Limiting Processes
356

λλ

λ = 0.85 eV

M–G theory

Since Butler–
Volmer theory is 
based on the LFER 
approximation 
only, can it report 
on aspects of the 
inverted region?… Nope!

… but why do these current densities, 𝑗𝐸, 
and rate constants, 𝑘′𝑗,𝐸,obs, plateau at large 

overpotential, 𝜂? … Not for the same reasons!

B–V theory
(Current–Overpotential Equation)

- - - - - -

Bard & Faulkner, Chapter 3, Figure 3.4.5, Page 104

50              100            150             200
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• Use of a semiconductor limits 
the electronic states to those 
with (approximately) a single 
𝜇𝑒−
o , which makes analysis of 

data simpler, i.e. one does not 
need to consider a distribution 
of states in the electrode

• But one cannot alter the 
driving force, ΔGAB

o, by simply 
changing the electrochemical 
potential of electrons (e–) in 
the (S)emi(C)onductor
working electrode, ഥ𝝁𝒆

𝐒𝐂, 
through variations in 𝑬𝐚𝐩𝐩, 

because instead that changes 
the concentration of e–

How can one use a 
semiconductor to 
study the inverted 
region?

Think solution studies… 
vary the molecule!

strongly inverted𝒌′𝒇,𝝁𝒆−
𝐨

𝑬𝐚𝐩𝐩
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T. W. Hamann, F. Gstrein, B. S. Brunschwig & N. S. Lewis, J. Am. Chem. Soc., 2005, 127, 7815–7824 
T. W. Hamann, F. Gstrein, B. S. Brunschwig & N. S. Lewis, J. Am. Chem. Soc., 2005, 127, 13949–13954

barrierless𝒌′𝒇,𝝁𝒆−
𝐨

𝑬𝐚𝐩𝐩



normal𝒌′𝒇,𝝁𝒆−
𝐨

𝑬𝐚𝐩𝐩

Marcus–Gerischer Theory
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λ = 0.67 eV

𝒌𝐈𝐄𝐓 (cm4 s-1)… a second-order rate constant!

T. W. Hamann, F. Gstrein, B. S. Brunschwig & N. S. Lewis, J. Am. Chem. Soc., 2005, 127, 7815–7824 
T. W. Hamann, F. Gstrein, B. S. Brunschwig & N. S. Lewis, J. Am. Chem. Soc., 2005, 127, 13949–13954
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𝛼𝛽

Symmetry factor (𝛽): change in the activation free energy of the 
cathodic elementary reaction step, expressed as a fraction of 𝑬𝐚𝐩𝐩

Transfer coefficient (𝛼j): change in the total observed (cath)odic/ 
(an)odic reaction rate expressed as a change in observed activation 
free energies as a fraction of 𝑬𝐚𝐩𝐩

TScath
−1 =

𝑑 log 𝑗𝐸
𝑑 𝜼

cath

=
−𝜶𝐜𝐚𝐭𝐡𝐹

2.303𝑅𝑇

TSan
−1 =

𝑑 log 𝑗𝐸
𝑑𝜼

an

=
𝜶𝐚𝐧𝐹

2.303𝑅𝑇

Do the two transfer 
coefficients always 
have to sum to one?

J. O’M. Bockris & Z. Nagy, J. Chem. Educ., 1973, 50, 839–843Schmickler & Santos, Chapter 6, Figure 6.1, Page 53

Frumkin isotherms

Langmuir isotherm
(ideal thermodynamics)

repelattract

log 𝑐/𝑐o + 𝜇sol − 𝜇ad /𝑘𝑇

* g is a lateral interaction term

* "Frumkin" non-idealities for Henderson–Hasselbalch pH titration curves result in similar behavior as the analogous "Hill" equation



Rate-Determining Step (RDS)
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Ground-state electron transfer

Excited-state electron transfer ΔGo
34

due to electrostatics
ΔGo

23

RDS 1st-order ET
ΔGo

12

in pre-equilibrium

or is diffusion-limited RDS

𝐄 = −
𝜕𝜙 𝑥

𝜕𝑥

Poisson’s Equation (from Gauss’s law)

𝜕2𝜙 𝑥

𝜕𝑥2
= −

ρ

𝜀

𝜙 𝑟 =
𝑞

4𝜋𝜀𝑟

But wait… is this the elementary reaction step for electron transfer between 
a (D)onor and an (A)cceptor in solution?

D + A D+ + A–

Nope!

ΔGR
o

due to entropy/sterics

ΔGp
o

due to entropy/sterics



… seemingly totally unrelated… how does one determine the observed resistance of 3 resistors 
in parallel, or 3 capacitors in series?

… so how does one determine the observed rate constant for 3 reactions in series?

… it’s the same general idea… 
1

𝒌𝒇,𝐨𝐛𝐬
=

1

𝑘1𝑓
+

1

𝑘2𝑓
′ +

1

𝑘3𝑓
′ … where 

𝜕 D

𝜕𝑡
=

𝜕 A

𝜕𝑡
= −𝒌𝒇,𝐨𝐛𝐬 D A

… except that Step 2 is preceded by Step 1… and Step 3 is preceded by Steps 1 and 2
… and only one of those Steps will dictate the observed rate when it is the slowest step
… so the (pre)ceding steps must be much faster… thus assume they are in equilibrium…

1

𝒌𝒇,𝐨𝐛𝐬
=

1

𝑘1𝑓
+

1

𝐾1𝑘2𝑓
+

1

𝐾1𝐾2𝑘3𝑓
=

1

𝑘1𝑓
+

𝑘1𝑏

𝑘1𝑓𝑘2𝑓
+

𝑘1𝑏𝑘2𝑏

𝑘1𝑓𝑘2𝑓𝑘3𝑓

… and for completion, what if 3 (same-order) reactions are in parallel?

… it’s as easy as it seems… 𝒌𝒇,𝐨𝐛𝐬 = 𝑘1𝑓 + 𝑘2𝑓 + 𝑘3𝑓 =
1

𝜏1𝑓
+

1

𝜏2𝑓
+

1

𝜏3𝑓
=

𝟏

𝝉𝒇,𝐨𝐛𝐬

RDS: Pre-Equilibrium Approximation
362

… it’s approximately equal to the smaller one… okay…
but mathematically, add their reciprocals… and reciprocate

D + A (D, A) (D+, A–) D+ + A–
1 2 3



RDS: Steady-State Approximation
363

… but what if we want to determine 
𝜕 D+

𝜕𝑡
=

𝜕 A−

𝜕𝑡
… and some preceding steps are fast?

… when all are fast, except Step 1, won’t 𝒌𝒇,𝐨𝐛𝐬 = 𝑘1𝑓 then?… not always…

Assume that the middle steps come and go quickly… so each has a small steady-state conc…
𝝏 𝐃,𝐀

𝝏𝒕
= 𝟎 = −𝑘2𝑓 D, A + 𝑘1𝑓 D A … and thus D, A =

𝑘1𝑓 D A

𝑘2𝑓
𝝏 𝐃+,𝐀−

𝝏𝒕
= 𝟎 = −𝑘3𝑓 D+, A− + 𝑘2𝑓 D, A … and thus D+, A− =

𝑘2𝑓 D,A

𝑘3𝑓

… which means that D+, A− =
𝑘1𝑓𝑘2𝑓 D A

𝑘2𝑓𝑘3𝑓
=

𝑘1𝑓 D A

𝑘3𝑓

… since 
𝜕 D+

𝜕𝑡
=

𝜕 A−

𝜕𝑡
= 𝑘3𝑓 D+, A− … this is just equal to 𝑘1𝑓 D A … and 𝒌𝒇,𝐨𝐛𝐬 = 𝑘1𝑓

… which is what the pre-equilibrium approximation would have predicted too, so… unexciting!

D + A (D, A) (D+, A–) D+ + A–
1 2 3



Chemical Kinetics (summary for today)

• Continuity of mass, Mass transfer, Nernst–Planck equation, Diffusion, 
Diffusion coefficient, Migration, Mobility, Convection, Boundary layer

• Mass action, Microscopic reversibility, Förster cube, Square schemes, 
Rate constants, Activation energies, Transition-state theory, Marcus–
Hush theory, Transition-state character, Reorganization energies 
(outer and inner)

• Linear free energy relationships, Charge transfer across electrified 
interfaces, Butler–Volmer equation, Fermi’s golden rule, Solid-state 
physics, Marcus–Gerischer theory

• Rate-determining step, Steady-state & Pre-equilibrium 
approximations, Langmuir/Frumkin isotherms
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