Lecture \#12 of 14
 (3: TThF, 5: MTWThF, 4: MTWTh, 2: TW)

Prof. Shane Ardo

Department of Chemistry
University of California Irvine

Summary of Key Equations and Equilibrium

$A \rightleftarrows B$

$\frac{\partial c_{\mathrm{A}, z_{0}}}{\partial t}=\sum_{j} R_{\mathrm{A}, j}$
(Chemists should be yawning)

$$
\overline{\boldsymbol{\mu}}_{\boldsymbol{B}}^{\alpha}-\overline{\boldsymbol{\mu}}_{A}^{\alpha}=\Delta \boldsymbol{G}^{\alpha}=\Delta \boldsymbol{G}^{\mathbf{o}, \boldsymbol{\alpha}}+\boldsymbol{R} \boldsymbol{T} \ln \boldsymbol{Q} \ldots \text { where } Q=\frac{a_{B}^{\alpha}}{a_{A}^{\alpha}}=\frac{\gamma_{B}^{\alpha}\left(c_{B}^{\alpha} / /_{\mathrm{B}}^{0, \alpha}\right)}{\gamma_{A}^{\alpha(}\left(c_{A}^{c} / c_{A}^{0, \alpha}\right)}
$$

$$
R_{\mathrm{A}, f}=-\boldsymbol{k}_{f} a_{\mathrm{A}} \quad R_{\mathrm{B}, f}=+\boldsymbol{k}_{f} a_{\mathrm{A}} \quad k_{j}(\mathrm{M} / \mathrm{s}) \ldots \text { a rate! }
$$

$$
R_{\mathrm{A}, b}=+\boldsymbol{k}_{b} a_{\mathrm{B}} \quad R_{\mathrm{B}, b}=-\boldsymbol{k}_{b} a_{\mathrm{B}} \quad \boldsymbol{k}_{j}^{\prime}\left(\mathrm{s}^{-1}\right) . . \text { an inverse time constant! }
$$

$$
\overline{\boldsymbol{\mu}}_{i}^{\alpha}=\left(\frac{\boldsymbol{\partial} \boldsymbol{G}^{\alpha}}{\boldsymbol{\partial \boldsymbol { n } _ { i } ^ { \alpha }}}\right)_{\boldsymbol{T}, \boldsymbol{p}, \boldsymbol{n}_{\neq i}^{\alpha}} \quad \frac{\partial c_{\mathrm{A}, z_{0}}^{\alpha}}{\partial t}=-\boldsymbol{k}_{\boldsymbol{f}} a_{\mathrm{A}}^{\alpha}+\boldsymbol{k}_{b} a_{\mathrm{B}}^{\alpha}=-\boldsymbol{k}_{\boldsymbol{f}}^{\prime} c_{\mathrm{A}}^{\alpha}+\boldsymbol{k}_{\boldsymbol{b}}^{\prime} c_{\mathrm{B}}^{\alpha}=-\frac{\partial c_{\mathrm{B}, z_{0}}^{\alpha}}{\partial t}
$$

Now, consider the reaction to be at equilibrium (3 ways)... $\Delta G^{\alpha}=0=\Delta G^{\mathrm{o}, \alpha}+R T \ln Q$

$$
\ldots \text { and so, } \Delta G^{\mathrm{o}, \alpha}=-R T \ln K \text {, with } K=\frac{a_{\mathrm{B}, \mathrm{eq}}^{\alpha}}{a_{\mathrm{A}, \mathrm{eq}}^{\alpha}}=\frac{\gamma_{\mathrm{B}}^{\alpha}\left(c_{\mathrm{B}, \mathrm{eq}}^{\alpha} / c_{\mathrm{B}}^{\mathrm{o}, \alpha}\right)}{\gamma_{\mathrm{A}}^{\alpha}\left(c_{\mathrm{A}, \mathrm{eq}}^{\alpha} / c_{\mathrm{A}}^{\mathrm{o}, \alpha}\right)}
$$

And also, $\bar{\mu}_{\mathrm{B}}^{\alpha}-\bar{\mu}_{\mathrm{A}}^{\alpha}=0 \ldots$ and so, $\bar{\mu}_{\mathrm{A}}^{\alpha}=\bar{\mu}_{\mathrm{B}}^{\alpha} \ldots$ if that is even helpful
And also, $\frac{\partial c_{\mathrm{A}, Z_{0}}^{\alpha}}{\partial t}=0=-\frac{\partial c_{\mathrm{B}, Z_{0}}^{\alpha}}{\partial t}=-\boldsymbol{k}_{\boldsymbol{f}} a_{\mathrm{A}, \mathrm{eq}}^{\alpha}+\boldsymbol{k}_{\boldsymbol{b}} a_{\mathrm{B}, \mathrm{eq}}^{\alpha} \ldots$ and so $\frac{\boldsymbol{k}_{f}}{k_{b}}=\frac{a_{\mathrm{B}, \mathrm{eq}}^{\alpha}}{a_{\mathrm{A}, \mathrm{eq}}^{\alpha}}=\frac{\gamma_{\mathrm{B}}^{\alpha}\left(c_{\mathrm{B}, \mathrm{eq}}^{\alpha} / c_{\mathrm{B}}^{\mathrm{o}, \alpha}\right)}{\gamma_{\mathrm{A}}^{\alpha}\left(c_{\mathrm{A}, \mathrm{eq}}^{\alpha} / c_{\mathrm{A}}^{\mathrm{o}, \alpha}\right)}=K$

Transport as a Chemical Reaction

... in a reaction "volume" $z_{0} \ldots$
... that encompasses z_{1} and z_{2}

$\mathrm{A}_{z_{1}}^{-} \rightleftarrows \mathrm{A}_{z_{2}}^{-}$

$$
\boldsymbol{R}_{\mathrm{A}}=-k_{f} c_{\mathrm{A}_{z_{1}}}+k_{b} c_{\mathrm{A}_{z_{2}}}=\left(\boldsymbol{k}_{b}-\boldsymbol{k}_{f}\right) c_{\mathrm{A}_{z_{1}}}+\boldsymbol{k}_{b} \Delta c_{\mathrm{A}} \ldots \text { where } c_{\mathrm{A}_{z_{2}}}=c_{\mathrm{A}_{z_{1}}}+\Delta c_{\mathrm{A}}
$$

$$
\mathbf{N}_{\mathrm{A}}=\left(-\frac{D_{\mathrm{A}}}{R T} \frac{\partial \bar{\mu}_{\mathrm{A}}}{\partial z}\right) c_{\mathrm{A}}=-\frac{D_{\mathrm{A}}}{R T}\left(\frac{R T}{c_{\mathrm{A}}} \frac{d c_{\mathrm{A}}}{d z}+\frac{d \mu_{\mathrm{A}}^{0}}{d z}-R T \frac{d(\ln \gamma)}{d z}-R T \frac{d\left(\ln c_{\mathrm{A}}^{0}\right)}{d z_{\uparrow}}-F \frac{d \Phi}{d z}\right) c_{\mathrm{A}}
$$

$$
=-D_{\mathrm{A}} \frac{d c_{\mathrm{A}}}{d z}+\frac{-D_{\mathrm{A}} F \mathbf{E}^{\prime}}{R T} c_{\mathrm{A}} \approx-\frac{D_{\mathrm{A}}}{l} \Delta c_{\mathrm{A}}+\frac{-D_{\mathrm{A}} F \mathbf{E}^{\prime}}{R T} c_{\mathrm{A}}
$$

Chemical Kinetics

Prof. Shane Ardo
Department of Chemistry
University of California Irvine

- Continuity of mass, Mass transfer, Nernst-Planck equation, Diffusion, Diffusion coefficient, Migration, Mobility, Convection, Boundary layer
- Mass action, Microscopic reversibility, Förster cube, Square schemes, Rate constants, Activation energies, Transition-state theory, MarcusHush theory, Transition-state character, Reorganization energies (outer and inner)
- Linear free energy relationships, Charge transfer across electrified interfaces, Butler-Volmer equation, Fermi's golden rule, Solid-state physics, Marcus-Gerischer theory
- Rate-determining step, Steady-state \& Pre-equilibrium approximations, Langmuir/Frumkin isotherms

Continuity of Mass

(REVIEW) 331

"Jean Piaget, the Swiss psychologist who first studied object permanence in infants, argued that it is one of an infant's most important accomplishments, as, without this concept, objects would have no separate, permanent existence."

- Wiki, Object permanence

Thermodynamics versus Kinetics

(REVIEW) 332

Thermodynamics are only as important as their influence on kinetics...
... energetics from thermodynamics dictate equilibrium concentrations...
... but it is the kinetic (and transport) properties that influence how those conditions change upon perturbation...

this master equation describes all kinetic and transport processes for mass... more on this later...

1D Transport in Liquids (solids are simpler)

$$
\frac{\partial c_{\mathrm{A}, z_{0}}}{\partial t}=-\frac{\partial \mathbf{N}_{\mathrm{A}}}{\partial z}
$$

(MechEs should be yawning)

$$
\mathbf{N}_{\mathrm{A}}=-\left(\frac{D_{\mathrm{A}} c_{\mathrm{A}}}{R T}\right) \frac{\partial \bar{\mu}_{\mathrm{A}}}{\partial z}+v c_{\mathrm{A}}
$$

... there are many driving forces for flux of species... ... convection $(v c)$ is just one (e.g., $d T / d x$)

Group terms... then mass transfer resembles mass action (assume $v=0$ for simplicity)...

$$
\mathbf{N}_{\mathrm{A}}=-\boldsymbol{D}_{\mathrm{A}} \frac{\boldsymbol{\partial}\left(\overline{\boldsymbol{\mu}}_{\mathrm{A}} / \boldsymbol{R} \boldsymbol{T}\right)}{\boldsymbol{\partial z}} c_{\mathrm{A}}
$$

What are the directions for the dimensions of $\boldsymbol{D}_{\mathrm{A}}$?
BOLD (($\left.\left.\mathrm{cm}^{2} / \mathrm{s}\right) / \mathrm{cm}\right)=\mathrm{cm} / \mathrm{s}$... a velocity!
... and with $\frac{\partial}{\partial z^{\prime}}$ units are $\mathrm{s}^{-1} \ldots$ an inverse time constant!
... and that equals zero at steady state
(Note that... $R_{\mathrm{A}, \text { total }}=-\boldsymbol{k}_{\boldsymbol{f}}^{\prime} c_{\mathrm{A}}+\boldsymbol{k}_{\boldsymbol{b}}^{\prime} c_{\mathrm{B}} \ldots$ with $\boldsymbol{k}_{\boldsymbol{j}}^{\prime}\left(\mathrm{s}^{-1}\right)$, an inverse time constant!)

1D Transport in Solids (liquids are "harder")

Let's expand Flux $_{z, e}=-\frac{\sigma_{e}}{F^{2}} \frac{d \overline{\boldsymbol{\mu}}_{e}}{d z}-S_{e, T_{e}} \frac{d \boldsymbol{T}_{e}}{d z}$

$$
\left(\frac{\partial \boldsymbol{G}}{\partial \boldsymbol{n}_{\boldsymbol{i}}}\right)_{\boldsymbol{T}, \boldsymbol{p}, \boldsymbol{n}_{\boldsymbol{j} \neq \boldsymbol{i}}}=\overline{\boldsymbol{\mu}}_{\boldsymbol{i}}=\boldsymbol{\mu}_{\boldsymbol{i}}+z_{i} q \Phi
$$

the total

$$
\mu_{i}=\mu_{i}^{0}+k T_{i} \ln a_{i}=\mu_{i}^{0}+k T_{i} \ln \left(\frac{\gamma_{i} n_{i}}{n_{i}^{0}}\right)
$$

... assuming a species, e, with valency, z_{e}, equal to -1

Flux $_{z, e}=-\frac{D_{e} n_{e}}{k \boldsymbol{T}_{e}}\left(\frac{d \mu_{e}^{0}}{d z}+\frac{k \boldsymbol{T}_{e}}{\gamma_{e}} \frac{d \gamma_{e}}{d z}+\frac{k \boldsymbol{T}_{e}}{n_{e}} \frac{d n_{e}}{d z}-\frac{k \boldsymbol{T}_{e}}{n_{e}^{0}} \frac{d n_{e}^{0}}{d z}+k\left(\ln \frac{\gamma_{e} n_{e}}{n_{e}^{0}}\right) \frac{d \boldsymbol{T}_{e}}{d z}-q \frac{d \phi}{d z}\right)-S_{e, T_{e}} \frac{d \boldsymbol{T}_{e}}{d z}$
... other species may have different values for every term, except ϕ

$$
\text { Flux }_{z, e}=-D_{e}\left(\frac{n_{e}}{k \boldsymbol{T}_{e}} \frac{d \mu_{e}^{0}}{d z}+\frac{n_{e}}{\gamma_{e}} \frac{d \gamma_{e}}{d z}+\frac{d n_{e}}{d z}-\frac{n_{e}}{n_{e}^{0}} \frac{d n_{e}^{0}}{d z}+\frac{n_{e}}{\boldsymbol{T}_{e}}\left(\ln \frac{\gamma_{e} n_{e}}{n_{e}^{0}}\right) \frac{d \boldsymbol{T}_{e}}{d z}-\frac{q n_{e}}{k \boldsymbol{T}_{e}} \frac{d \phi}{d z}\right)-S_{e, \boldsymbol{T}_{e}} \frac{d \boldsymbol{T}_{e}}{d z}
$$

differential... Flux $_{z, e}=-\frac{D_{e} n_{e}}{k \boldsymbol{T}_{e}}\left(\frac{d \boldsymbol{\mu}_{e}}{d z}-q \frac{d \phi}{d z}\right)-S_{e, T_{e}} \frac{d \boldsymbol{T}_{e}}{d z}$

Drift-Diffusion

$$
\text { Flux }_{z, e}=-D_{e} \frac{d n_{e}}{d z}+\frac{q D_{e} n_{e}}{k T_{e}} \frac{d \phi}{d z} \quad \ldots \text { assuming spatially invariant } \mu_{e}^{0}, \gamma_{e}, n_{e}^{0}, T_{e}
$$

equation

$$
\operatorname{Flux}_{z, e}=-D_{e} n_{e}\left(\frac{d \mu_{e}^{0}}{k \boldsymbol{T}_{e} d z}+\frac{d\left(\ln \gamma_{e}\right)}{d z}+\frac{d\left(\ln n_{e}\right)}{d z}-\frac{d\left(\ln n_{e}^{0}\right)}{d z}-\frac{d(q \phi)}{k \boldsymbol{T}_{e} d z}\right)-\boldsymbol{D}_{n_{e}, \gamma_{e}, n_{e}^{0}, \boldsymbol{T}_{e}} \frac{d \boldsymbol{T}_{e}}{d z}
$$

Outer Reorganization Energy

(REVIEW) 335

Marcus-Hush (1950s-1960s)

theoretical (semiclassical) rate constant equation

$$
k_{\mathrm{ET}}=\frac{2 \pi}{\hbar}\left|H_{\mathrm{DA}}\right|^{2} \frac{1}{\sqrt{4 \pi \lambda_{\mathrm{AB}} k T}} \exp \left(-\frac{\Delta G_{\mathrm{AB}}^{\neq}}{k T}\right)
$$

$$
\Delta G_{\mathrm{AB}}{ }^{\neq}=\frac{\left(\lambda_{\mathrm{AB}}+\Delta G_{\mathrm{AB}}^{0}\right)^{2}}{4 \lambda_{\mathrm{AB}}}
$$

... but what causes this parabolic relationship?...
... what physical expression results in a quadratic dependence on charge?
... classical electrostatics... of the solvent!

... dielectric continuum model...
... $G_{\text {out }} \approx 1 \mathrm{eV}$ in water
... $G_{\text {out }}$ decreases as permittivity decreases

$$
\lambda_{\text {out }}=\left(\frac{1}{2 r_{\mathrm{D}}}+\frac{1}{2 r_{\mathrm{A}}}-\frac{1}{R_{\mathrm{DA}}}\right)\left(\frac{1}{\epsilon_{\infty}}-\frac{1}{\epsilon_{\mathrm{s}}}\right)(\Delta e)^{2}
$$

Outer + Inner Reorganization Energy

Marcus-Hush (1950s-1960s)

theoretical (semiclassical) rate constant equation
This theory came about by answering the following question: For an electron-transfer event, how does one satisfy the Franck-Condon principle and the conservation of energy?

- Franck-Condon principle: Nuclei are fixed during electron-transfer between orbitals... Born-Oppenheimer approximation is relevant

Electron Transfer in Solution

$$
\lambda_{\mathrm{AB}}=\lambda_{\mathrm{in}}+\lambda_{\text {out }}
$$

$\lambda_{i}=\sum_{l} \lambda_{i, l}=\frac{1}{2} \sum_{l} f_{l}\left(\Delta q_{e, l}\right)^{2}$
... this is for a harmonic oscillator
... with force constants, $f_{l \ldots}$
... and yes, it's another parabola!

nuclear configuration

More Quantum Mechanics

But you still didn't tell us why we need to recall this equation

$$
\frac{\partial^{2} \phi(x)}{\partial x^{2}}=-\frac{\rho}{\varepsilon} \quad \mathbf{E}=-\frac{\partial \phi(x)}{\partial x}
$$

$$
\widehat{H} \psi_{n}(x)=(\widehat{T}+\widehat{V}) \psi_{n}(x)=\mathrm{E}_{n} \psi(x)
$$

... we need to fill internal energies, E_{n}, with particles... okay.
... and that under most chemical conditions, potential energy, $\widehat{V}(x)$, is electrostatic, $\phi(x)$
... which is actually not so limiting because there are only 4-ish forces of Nature
... and while we're at it, let's (re)learn overlap integral $\left(S_{n m}\right)$, expectation value ($\left\langle p_{n}\right\rangle$), bra-ket notation $\left(\left\langle\psi_{n} \mid \psi_{m}\right\rangle\right)$, and exponential tunneling probability...

Probability $\operatorname{Density}(x)=\left|\psi_{n}(x)\right|^{2}=\psi_{n}^{*}(x) \psi_{n}(x)$
... with $\psi_{n}^{*}(x)$ (complex conjugate)
Overlap integral, $S_{n m}=\int_{-\infty}^{\infty} \psi_{n}^{*}(x) \psi_{m}(x) d x=\left\langle\psi_{n} \mid \psi_{m}\right\rangle$

$$
\ldots \text { with }\left\langle\Psi_{n}\right| \text { ("bra") and }\left|\Psi_{m}\right\rangle \text { ("ket") }
$$

Mean Energy, $\left\langle\mathrm{E}_{n}\right\rangle=\frac{\int_{-\infty}^{\infty} \Psi_{n}^{*}(x, t) \widehat{H} \Psi_{n}(x, t) d x}{\int_{-\infty}^{\infty} \Psi_{n}^{*}(x, t) \Psi_{n}(x, t) d x}=\left\langle\Psi_{n}\right| \widehat{H}\left|\Psi_{n}\right\rangle=\langle\widehat{H}\rangle$

Molecular Orbital Theory

Marcus-Hush (1950s-1960s)

theoretical (semiclassical) rate constant equation

$$
k_{\mathrm{ET}}=\frac{2 \pi}{\hbar}\left|H_{\mathrm{DA}}\right|^{2} \frac{1}{\sqrt{4 \pi \lambda_{\mathrm{AB}} k T}} \exp \left(-\frac{\Delta G_{\mathrm{AB}}^{\neq}}{k T}\right)
$$

quantum adiabatic
classical nuclear free-
electronic coupling energy dependence

Molecular Orbital Theory

linear combination of atomic orbitals
(50) The splitting at the intersection is only equal to $2 H_{\mathrm{AB}}$ when the overlap of the electronic wave functions can be neglected. More generally it is equal to $2\left(H_{\mathrm{AB}}-S_{\mathrm{AB}} H_{\mathrm{AA}}\right) /\left(1-S_{\mathrm{AB}}{ }^{2}\right)$ where $S_{\mathrm{AB}}=\left\langle\psi_{\mathrm{A}} \mid \psi_{\mathrm{B}}\right\rangle$.
... which equals $\left(E_{+}-E_{-}\right)$from MO Theory
... remember the simplicity of $\mathrm{H}_{2}{ }^{+} \ldots$ which resembles $\lambda_{\text {out }}$ math $\hat{H}\left(r, R_{a b}\right)=-\frac{\hbar^{2}}{2 m} \nabla_{a}^{2}-\frac{\hbar^{2}}{2 m} \nabla_{b}^{2}-\frac{\hbar^{2}}{2 m} \nabla^{2}-\frac{e^{2}}{4 \pi \epsilon_{0} r_{a}}-\frac{e^{2}}{4 \pi \epsilon_{0} r_{b}}+\frac{e^{2}}{4 \pi \epsilon_{0} R_{a b}}$ Atomic Molecular orbital Orbital
(Atom A)
 $E_{ \pm}(R)=\frac{1}{1 \pm S(R)}\left(H_{A A}(R) \pm H_{A B}(R)\right)$

Observation of Inverted Region Behavior

Marcus-Hush (1950s-1960s)

theoretical (semiclassical) rate constant equation
The Inverted Region Effect
Foreshadowing...

REACTION COORDINATE q

Closs-Miller (1984)
observation of inverted region

L. T. Calcaterra, J. R. Miller \& G. L. Closs, J. Am. Chem. Soc., 1984, 106, 3047-3049
G. L. Closs \& J. R. Miller, Science, 1988, 240, 440-447

Linear Free Energy Relationships (LFERs)

Marcus-Hush (1950s-1960s)
theoretical (semiclassical) rate constant equation

Brønsted-Pedersen (1924)

empirical LFER for proton transfer
linear free-energy relation online se.... \rangle

Also contains definition of: linear Gibbs energy relation
A linear correlation between the logarithm of a rate constant or equilibrium constant for one series of reactions and the logarithm of the rate constant or equilibrium constant for a related series of reactions. Typical examples of such relations (also known as linear Gibbs energy relations) are the Bronsted relation, and the Hammett equation.
The name arises because the logarithm of an equilibrium constant (at constant temperature and pressure) is proportional to a standard free energy. (Gibbs energy) change, and the logarithm of a rate constant is a linear function of the free energy. (Gibbs energy) of activation.
It has been suggested that this name should be replaced by linear Gibbs energy relation, but at present there is little sign of acceptance of this change. The area of physical organic

Cite as: IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Online version (2019-) created by S. J. Chalk. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook.
©iv.III PDF Text JSon Histon Feedback
Last revised: February 24, 2014
trend looks linear over a small enough $\Delta G_{\mathrm{AB}}{ }^{\circ}$ range
J. Albery, Ann. Rev. Phys. Chem., 1980, 31, 227-263
R. A. Marcus, Farad. Discuss. Chem. Soc., 1982, 74, 7-15

Marcus Kinetic Behavior

Table 13 Applications of the Marcus relation

Electron transfers	Electrochemical Tafel Law Electrode kinetics at semiconductors
	Homogeneous Correlation with electrochemical Cross reactions obey Marcus relation (Eq. 4)
Proton transfers	Marcus relation reduces to Bronsted Law O, N bases and Explains curved Bronsted plots some transfers to \mathbf{C} Concerted reactions Describes enolization of acetone
Methyl transfers	Cross reactions obey Marcus relation Swain-Scott n separated into n^{\ddagger} and n^{θ} αD isotope effects measure C^{+}character
Nucleophilic additions	Provides alternative explanation to Ritchie relation Values of \bar{G} found to be constant for similar species

Charge Transfer across Electrified Interfaces

... aren't these so-called "heterogeneous electron-transfer reactions"?... Sure.
$R_{\mathrm{O}}=\frac{\partial c_{\mathrm{O}, z_{0}}}{\partial t}=-\boldsymbol{k}_{\boldsymbol{f}} c_{\mathrm{O}}+\boldsymbol{k}_{\boldsymbol{b}} c_{\mathrm{R}}$

$\mathrm{e}^{-, \mathrm{M}}+\mathrm{O} \rightleftarrows \mathrm{R}$

FYI: For each c_{0} and c_{R}, electrochemical equilibrium $(j=0)$ is attained via interfacial charge transfer to alter $\Delta \phi^{\mathrm{M} \mid \mathrm{s}}$
... R_{O} is a rate... with units of $\mathrm{M} / \mathrm{s}\left(=\mathrm{mol} \mathrm{dm} \mathrm{ds}^{-3}\right)$... $\boldsymbol{k}_{\boldsymbol{j}}\left(\mathrm{s}^{-1}\right)$ is an inverse time constant!
$\ldots j_{E}$ is a current density... with units of $A / \mathrm{cm}^{2}\left(=\mathrm{Cm}^{-2} \mathrm{~s}^{-1}\right)$ $\ldots k_{j, E}^{\prime}\left(\mathrm{cm} \mathrm{s}^{-1}\right)$ is a velocity!
\ldots as a specific case choose $\boldsymbol{E}^{\mathbf{0 \prime}} \ldots$ and thus, $j_{E^{\prime \prime}}=n F\left(-\boldsymbol{k}_{\boldsymbol{f}, \boldsymbol{E}^{\prime \prime} C_{0, z_{\mathrm{O}}}}+\boldsymbol{k}_{\boldsymbol{b}, \boldsymbol{E}^{\prime \prime} C_{\mathrm{R}, z_{\mathrm{O}}}}\right)$ But how does this lead to the Butler-Volmer eqn?...

$$
j_{E}=\boldsymbol{j}_{\mathbf{o}}\left\{\exp \left(\frac{(1-\boldsymbol{\beta}) F \boldsymbol{\eta}}{R T}\right)-\exp \left(\frac{-\boldsymbol{\beta} F \boldsymbol{\eta}}{R T}\right)\right\}
$$

$$
0=j_{E^{o^{\prime}}}=n F\left(-\boldsymbol{k}_{f, E^{\mathbf{o}^{\prime}}}^{\prime}+\boldsymbol{k}_{b, E^{\mathbf{o \prime}}}^{\prime}\right)
$$

$$
\boldsymbol{\eta}=\left(\boldsymbol{E}-\boldsymbol{E}_{\mathrm{eq}}\right)=\boldsymbol{E}_{\mathrm{app}}=\frac{\Delta G^{\mathrm{o}}}{-n F} \quad \ldots \text { where } \boldsymbol{\eta}(\mathrm{V}) \text { is overpotential }
$$

... this suggests that we will replace $\boldsymbol{k}_{\boldsymbol{j}, E}$ velocity rate constants... ... with thermodynamic driving force terms!... But how?... M-H!

Charge Transfer across Electrified Interfaces

- In electrochemistry, application of a potential, $E_{\text {app }}$, varies the electrochemical potential of electrons (e^{-}) in the (M)etal working electrode, $\bar{\mu}_{e}^{\mathrm{M}}$
- Based on thermodynamics, when written as a reduction reaction, changing $\bar{\mu}_{e}^{\mathrm{M}}$ alters the free energy (and one assumes also the standardstate free energy) of the reactants, as $\Delta G_{\mathrm{A}}=\bar{\mu}_{e}^{\mathrm{M}}+\bar{\mu}_{\mathrm{O}}\left(\right.$ and $\left.\Delta \boldsymbol{G}_{\mathrm{A}}^{\mathbf{0}}=\bar{\mu}_{e}^{\mathrm{M}}+\bar{\mu}_{\mathbf{0}}^{\mathbf{0}}\right)$
- The derivation here assumes that the electrode is inert, e.g. not like battery electrodes
* analogous conditions to a self-
 exchange reaction ($k_{f}=k_{b}$) for homogeneous electron transfer

Reaction coordinate

Charge Transfer across Electrified Interfaces
 Key Electrochemical Information
 $$
\mathrm{e}^{-, \mathrm{M}}+\mathrm{O} \rightleftarrows \mathrm{R}
$$

- In electrochemistry, application of a potential, $E_{\text {app }}$, varies the electrochemical potential of electrons (e^{-}) in the (M)etal working electrode, $\bar{\mu}_{e}^{\mathrm{M}}$
- Based on thermodynamics, when written as a reduction reaction, changing $\bar{\mu}_{e}^{\mathrm{M}}$ alters the free energy (and one assumes also the standardstate free energy) of the reactants, as $\Delta G_{\mathrm{A}}=\bar{\mu}_{e}^{\mathrm{M}}+\bar{\mu}_{\mathrm{O}}\left(\right.$ and $\left.\Delta \boldsymbol{G}_{\mathrm{A}}^{\mathbf{0}}=\bar{\mu}_{e}^{\mathrm{M}}+\bar{\mu}_{0}^{\mathbf{0}}\right)$ - Based on approximations, altering ΔG_{A} changes all ΔG values on the reaction coordinate relative to ΔG_{A}, and not the parabolic/linear shape of the reactant "surface"... Should it?

Reaction coordinate $\beta+(1-\boldsymbol{\beta})=\mathbf{1}$

Butler-Volmer equation

$$
\mathrm{e}^{-, \mathrm{M}}+\mathrm{O} \rightleftarrows \mathrm{R}
$$

$$
j_{E}=n F\left(\boldsymbol{k}_{\boldsymbol{b}, E}^{\prime} c_{\mathrm{R}, z_{0}}-\boldsymbol{k}_{f, E}^{\prime} c_{0, z_{0}}\right) \quad \ldots \text { for this example, let's assume that } n=1 \ldots
$$

$$
j_{E}=F \boldsymbol{k}^{0}\left\{c_{\mathrm{R}, z_{0}} \exp \left(\frac{(1-\boldsymbol{\beta}) F\left(E-E^{\mathrm{o}^{\prime}}\right)}{R T}\right)-c_{0, z_{0}} \exp \left(\frac{-\boldsymbol{\beta} F\left(E-E^{\mathrm{o}^{\prime}}\right)}{R T}\right)\right\}
$$

Current-Potential

 Characteristic$$
j_{E}=\boldsymbol{j}_{\mathbf{0}}\left\{\frac{c_{\mathrm{R}, z_{0}}}{c_{\mathrm{R}}^{*}} \exp \left(\frac{(1-\boldsymbol{\beta}) F \boldsymbol{\eta}}{R T}\right)-\frac{c_{\mathrm{O}, z_{0}}}{c_{\mathrm{O}}^{*}} \exp \left(\frac{-\boldsymbol{\beta} F \boldsymbol{\eta}}{R T}\right)\right\} \begin{aligned}
& \boldsymbol{\eta}=\left(\boldsymbol{E}-\boldsymbol{E}_{\mathrm{eq}}\right)=\boldsymbol{E}_{\mathrm{app}} \\
& \boldsymbol{j}_{\mathbf{o}}=F \boldsymbol{k}^{0} c_{\mathrm{R}}^{* \beta} c_{\mathrm{O}}^{*(1-\boldsymbol{\beta})}
\end{aligned}
$$

Current-
Overpotential
Equation
$\ldots c^{*}$ means bulk concentration... conversion is trivial using $E_{\text {eq }}=E^{0^{\prime}}-\frac{R T}{n F} \ln \frac{c_{\mathrm{R}}^{*}}{c_{\mathrm{O}}^{*}}$

$$
\begin{gathered}
j_{E}=\boldsymbol{j}_{\mathbf{o}}\left\{\exp \left(\frac{(1-\beta) F \boldsymbol{\eta}}{R T}\right)-\exp \left(\frac{-\beta F \boldsymbol{\eta}}{R T}\right)\right\} \begin{array}{cc}
\begin{array}{c}
\text { Butler- } \\
\text { Volmer } \\
\text { Equation }
\end{array} & \mathrm{TS}_{\text {cath }}^{-1}=\left(\frac{d\left(\log \left|j_{E}\right|\right)}{d|\boldsymbol{\eta}|}\right)_{\text {cath }}
\end{array}=\frac{-\boldsymbol{\beta} F}{2.303 R T} \\
\text { Slopel }
\end{gathered}
$$

Butler-Volmer equation

... let's examine effects of $\boldsymbol{j}_{\mathrm{o}}\left(\right.$ or $\left.\boldsymbol{k}^{\mathbf{0}}\right)$...

Bard \& Faulkner, Chapter 3, Figure 3.4.2, Page 101

$$
\ldots \text { recall that } \ldots \eta=\left(\boldsymbol{E}-\boldsymbol{E}_{\mathrm{eq}}\right)=\boldsymbol{E}_{\mathrm{app}}=\frac{\Delta G^{\mathrm{o}}}{-n F}
$$

Amalgam

Butler-Volmer equation

... let's examine effects of $\boldsymbol{\beta}$ (or Tafel slope)...

Bard \& Faulkner, Chapter 3, Figure 3.4.3, Page 101
\ldots recall that... $\boldsymbol{\eta}=\left(\boldsymbol{E}-\boldsymbol{E}_{\text {eq }}\right)=\boldsymbol{E}_{\text {app }}=\frac{\Delta G^{0}}{-n F}$

Butler-Volmer equation

... let's examine the tradeoff of $\boldsymbol{j}_{\mathbf{o}}$ and Tafel Slope...
... the latter has units of $\mathrm{mV} / \mathrm{dec}$ ade...
... wait, didn't Marcus teach us this should be a parabola?
... then, why is this "potential relationship" so linear?

Quick Quiz: Which catalyst is best?
(A) $\boldsymbol{j}_{\mathbf{0}}=10^{-4} \mathrm{~A} \mathrm{~cm}^{-2}, \mathrm{TS}=120 \mathrm{mV}$ decade ${ }^{-1}$ (B) $\boldsymbol{j}_{0}=10^{-7} \mathrm{Acm}^{-2}, \mathrm{TS}=60 \mathrm{mV}$ decade ${ }^{-1}$

Well, it depends on the desired $j_{E} \ldots$
For $1 \mathrm{~mA} \mathrm{~cm}^{-2}$, (A) is best, but...
For $1 \mathrm{~A} \mathrm{~cm}^{-2},(B)$ is best...
... because catalyst (A) requires $\boldsymbol{\eta}=\mathbf{4 8 0} \mathrm{mV}$, while catalyst (B) requires $\boldsymbol{\eta}=\mathbf{4 2 0} \mathrm{mV}$!
... and neither may be "best" in practice, if they aren't stable or selective for the reaction of interest!

Take-home point: Each current density has a corresponding overpotential!

Fermi's (Second) Golden Rule

$$
j_{E}=n F\left(-\boldsymbol{k}_{f, E}^{\prime} c_{0, z_{0}}+\boldsymbol{k}_{b, E}^{\prime} c_{\mathrm{R}, z_{0}}\right)
$$

$$
\boldsymbol{k}_{j}^{\prime}\left(\mathrm{cm} \mathrm{~s}^{-1}\right) \ldots \text { a velocity! }
$$

$$
\lambda_{i f}=\frac{2 \pi}{\hbar}\left|M_{i f}\right|^{2} \rho_{f} \quad \text { Recall M-H... } k_{\mathrm{ET}}=\frac{2 \pi}{\hbar}\left|H_{\mathrm{DA}}\right|^{2} \frac{1}{\sqrt{4 \pi \lambda_{\mathrm{AB}} k T}} \exp \left(-\frac{\Delta G_{\mathrm{AB}}{ }^{*}}{k T}\right)
$$

Transition probability

 for the interaction states (DoS)
... divide the DoS by $c_{i, z_{0}} \ldots$
applied potential
R. Memming, Chapter 6, Semiconductor Electrochemistry

$$
\begin{aligned}
& \text { frequency factor }\left(\mathrm{s}^{-1}\right) \\
& \qquad k_{\mathrm{f}}=\nu \int_{-\infty}^{\infty} \varepsilon_{\mathrm{red}}(\mathbf{E}) W_{\mathrm{O}}(\lambda, \mathbf{E}) f(\mathbf{E}) \rho(\mathbf{E}) d \mathbf{E}
\end{aligned}
$$

$$
\text { proportionality function }\left(\mathrm{cm}^{3} \mathrm{eV}\right)
$$

$$
\boldsymbol{k}_{f, E, \mathrm{obs}}^{\prime}=\int_{-\infty}^{\infty} \boldsymbol{k}_{f, \mathrm{E}}^{\prime} d \mathbf{E} \quad \boldsymbol{k}_{\boldsymbol{b}, \mathbf{E}, \mathrm{obs}}^{\prime}=\int_{-\infty}^{\infty} \boldsymbol{k}_{\boldsymbol{b}, \mathrm{E}}^{\prime} d \mathbf{E}
$$

$$
k_{\mathrm{b}}=\nu \int_{-\infty}^{\infty} \varepsilon_{\mathrm{ox}}(\mathbf{E}) W_{\mathrm{R}}(\lambda, \mathbf{E})[1-f(\mathbf{E})] \rho(\mathbf{E}) d \mathbf{E}
$$

$$
j_{E, \mathrm{obs}}=n F\left(-\boldsymbol{k}_{\boldsymbol{f}, \boldsymbol{E}, \mathbf{o b s}}^{\prime} C_{\mathrm{O}, z_{\mathrm{o}}}+\boldsymbol{k}_{\boldsymbol{b}, \boldsymbol{E}, \mathbf{o b s}}^{\prime} C_{\mathrm{R}, z_{\mathrm{o}}}\right)
$$

Solid-State Physics Terminology
 $$
{\overline{\mu_{i}}}_{i}=\left(\frac{\partial G}{\partial n_{i}}\right)_{T, p, n_{j \neq i}}
$$

$\mathrm{Si}_{\mathrm{CB}}\left(\mathrm{h}^{+}\right)+\mathrm{Si}_{\mathrm{VB}}\left(\mathrm{e}^{-}\right) \rightleftarrows \mathrm{Si}_{\mathrm{CB}}\left(\mathrm{e}^{-}\right)+\mathrm{Si}_{\mathrm{VB}}\left(\mathrm{h}^{+}\right)$

At equilibrium,

$$
\bar{\mu}_{\mathrm{CB}\left(\mathrm{~h}^{+}\right)}^{\mathrm{Si}}+\bar{\mu}_{\mathrm{VB}\left(\mathrm{e}^{-}\right)}^{\mathrm{Si}}=\bar{\mu}_{\mathrm{CB}\left(\mathrm{e}^{-}\right)}^{\mathrm{Si}}+\bar{\mu}_{\mathrm{VB}\left(\mathrm{~h}^{+}\right)}^{\mathrm{Si}}
$$

As reference states, it is useful to define

$$
\bar{\mu}_{\mathrm{CB}\left(\mathrm{~h}^{+}\right)}^{\mathrm{Si}}=\bar{\mu}_{\mathrm{VB}\left(\mathrm{e}^{-}\right)}^{\mathrm{Si}}=0
$$

... you can define up to one more $\bar{\mu}_{i}^{\mathrm{Si}}$, but the last $\bar{\mu}_{i}^{\text {Si }}$ has to be defined based on calorimetry data
Anyway... therefore,

$$
\mathbf{E}_{\mathrm{F}, \mathrm{e}^{-}}=\bar{\mu}_{\mathrm{e}^{-}}
$$

$$
\begin{aligned}
& \bar{\mu}_{\mathrm{CB}\left(\mathrm{e}^{-}\right)}^{\mathrm{Si}}=-\bar{\mu}_{\mathrm{VB}\left(\mathrm{~h}^{+}\right)}^{\mathrm{Si}} \quad \mathbf{E}_{\mathrm{F}, \mathrm{~h}^{+}}=-\bar{\mu}_{\mathrm{h}^{+}} \\
& \mathbf{E}_{\mathrm{F}, \mathrm{e}^{-}}=\mathbf{E}_{\mathrm{F}, \mathrm{~h}^{+}}
\end{aligned}
$$

(b) p-TYPE

(c) I-TYPE WITH

Fig. 2-Electrostatic potential ψ, Fermi level φ and quasi Fermi levels φ_{p} and φ_{n}. (In order to show electrostatic potential and energies on the same ordinates, the energies of holes, which are minus the energies of electrons, are plotted upwards in the figures in this paper.)

Marcus-Gerischer Theory

Marcus-Gerischer Theory

quantum adiabatic electronic coupling
classical nuclear free-energy dependence

... as an aside... why is the data biphasic for the Current?
... RC-circuit double layer charging... followed by $1^{\text {st. }}$ order ET kinetics

C. E. D. Chidsey, Science, 1991, 251, 919-922
H. D. Sikes, J. F. Smalley, S. P. Dudek, A. R. Cook, M. D. Newton, C. E. D. Chidsey \& S. W. Feldberg, Science, 2001, 291, 1519-1523

Marcus-Gerischer Theory

Marcus-Gerischer Theory

Marcus-Gerischer Theory

- It is easy to sweep/vary the driving force, $\Delta G_{A B}$, by simply changing the electrochemical potential of electrons (e^{-}) in the (M)etal working electrode, $\bar{\mu}_{e}^{\mathrm{M}}$, through variations in E_{app}
- But evidence of the inverted region is a little challenging to clearly observe
... what if Chidsey had plotted the derivative of his data on the right?
... what do you expect that would have looked like?... a nice Marcus parabola!
... I wish he had done that!

Limiting Processes

(Current-Overpotential Equation)

Since ButlerVolmer theory is based on the LFER approximation only, can it report on aspects of the inverted region? ... Nope!

... but why do these current densities, j_{E}, and rate constants, $k_{j, E, o b s}^{\prime}$, plateau at large

$$
\lambda=0.85 \mathrm{eV}
$$

Marcus-Gerischer Theory

- Use of a semiconductor limits the electronic states to those with (approximately) a single $\mu_{e^{-}}^{0}$, which makes analysis of data simpler, i.e. one does not need to consider a distribution of states in the electrode
- But one cannot alter the driving force, $\Delta G_{A B}{ }^{\circ}$, by simply changing the electrochemical potential of electrons (e^{-}) in the (S)emi(C)onductor working electrode, $\bar{\mu}_{e}^{\text {SC }}$, through variations in $E_{\text {app }}$, because instead that changes the concentration of e^{-}

How can one use a semiconductor to study the inverted region?

Think solution studies... vary the molecule!

Marcus-Gerischer Theory

T. W. Hamann, F. Gstrein, B. S. Brunschwig \& N. S. Lewis, J. Am. Chem. Soc., 2005, 127, 7815-7824 T. W. Hamann, F. Gstrein, B. S. Brunschwig \& N. S. Lewis, J. Am. Chem. Soc., 2005, 127, 13949-13954

Marcus-Gerischer Theory

$\boldsymbol{k}_{\text {IET }}\left(\mathrm{cm}^{4} \mathrm{~s}^{-1}\right)$... a second-order rate constant!
T. W. Hamann, F. Gstrein, B. S. Brunschwig \& N. S. Lewis, J. Am. Chem. Soc., 2005, 127, 7815-7824 T. W. Hamann, F. Gstrein, B. S. Brunschwig \& N. S. Lewis, J. Am. Chem. Soc., 2005, 127, 13949-13954

Charge Transfer across Electrified Interfaces

J. O'M. Bockris ${ }^{1}$ and Z. Nagy ${ }^{2}$
Electrochemistry Laboratory
University of Pennsylvania
Philadelphia, 19104

* g is a lateral interaction term

Schmickler \& Santos, Chapter 6, Figure 6.1, Page 53

Symmetry Factor and Transfer Coefficient

A source of confusion in electrode kinetics

Symmetry factor (β): change in the activation free energy of the cathodic elementary reaction step, expressed as a fraction of $\boldsymbol{E}_{\text {app }}$

Transfer coefficient ($\left.\alpha_{j}\right)$: change in the total observed (cath)odic/ (an)odic reaction rate expressed as a change in observed activation free energies as a fraction of $\boldsymbol{E}_{\text {app }}$

Do the two transfer coefficients always have to sum to one?

$$
\begin{gathered}
\mathrm{TS}_{\mathrm{cath}}^{-1}=\left(\frac{d\left(\log \left|j_{E}\right|\right)}{d|\boldsymbol{\eta}|}\right)_{\mathrm{cath}}=\frac{-\boldsymbol{\alpha}_{\text {cath }} F}{2.303 R T} \\
\mathrm{TS}_{\mathrm{an}}^{-1}=\left(\frac{d\left(\log j_{E}\right)}{d \boldsymbol{\eta}}\right)_{\mathrm{an}}=\frac{\boldsymbol{\alpha}_{\mathrm{an}} F}{2.303 R T}
\end{gathered}
$$

Rate-Determining Step (RDS)

$$
\begin{array}{ll}
\mathrm{D}+\mathrm{A} \rightleftarrows \mathrm{D}^{+}+\mathbf{A}^{-} \quad \frac{\partial^{2} \phi(x)}{\partial x^{2}}=-\frac{\rho}{\varepsilon} & \mathbf{E}=-\frac{\partial \phi(x)}{\partial x} \\
\text { p for electron transfer between } & \phi(r)=\frac{q}{4 \pi \varepsilon r}
\end{array}
$$

But wait... is this the elementary reaction step for electron transfer between a (D)onor and an (A)cceptor in solution?
 \section*{Nope!}
 \section*{Nope!}

RDS: Pre-Equilibrium Approximation

... seemingly totally unrelated... how does one determine the observed resistance of 3 resistors in parallel, or 3 capacitors in series? ... it's approximately equal to the smaller one... okay... but mathematically, add their reciprocals... and reciprocate

$$
D+A \stackrel{1}{\rightleftarrows}(D, A) \stackrel{2}{\rightleftarrows}\left(D^{+}, A^{-}\right) \stackrel{3}{\rightleftarrows} D^{+}+A^{-}
$$

... so how does one determine the observed rate constant for 3 reactions in series?
\ldots it's the same general idea... $\frac{1}{\boldsymbol{k}_{f, \mathbf{o b s}}}=\frac{1}{k_{1 f}}+\frac{1}{k_{2 f}^{\prime}}+\frac{1}{k_{3 f}^{\prime}} \ldots$ where $\frac{\partial[\mathrm{D}]}{\partial t}=\frac{\partial[\mathrm{A}]}{\partial t}=-\boldsymbol{k}_{f, \mathbf{o b s}}[\mathrm{D}][\mathrm{A}]$
... except that Step 2 is preceded by Step 1... and Step 3 is preceded by Steps 1 and 2
... and only one of those Steps will dictate the observed rate when it is the slowest step
... so the (pre)ceding steps must be much faster... thus assume they are in equilibrium...

$$
\frac{1}{\boldsymbol{k}_{f, \mathrm{obs}}}=\frac{1}{k_{1 f}}+\frac{1}{K_{1} k_{2 f}}+\frac{1}{K_{1} K_{2} k_{3 f}}=\frac{1}{k_{1 f}}+\frac{k_{1 b}}{k_{1 f} k_{2 f}}+\frac{k_{1 b} k_{2 b}}{k_{1 f} k_{2 f} k_{3 f}}
$$

... and for completion, what if 3 (same-order) reactions are in parallel?
\ldots it's as easy as it seems... $\boldsymbol{k}_{\boldsymbol{f}, \mathbf{o b s}}=k_{1 f}+k_{2 f}+k_{3 f}=\frac{1}{\tau_{1 f}}+\frac{1}{\tau_{2 f}}+\frac{1}{\tau_{3 f}}=\frac{\mathbf{1}}{\boldsymbol{\tau}_{f, \mathbf{o b s}}}$

RDS: Steady-State Approximation

... but what if we want to determine $\frac{\partial\left[\mathrm{D}^{+}\right]}{\partial t}=\frac{\partial\left[\mathrm{A}^{-}\right]}{\partial t} \ldots$ and some preceding steps are fast? ... when all are fast, except Step 1, won't $\boldsymbol{k}_{\boldsymbol{f}, \mathbf{o b s}}=k_{1 f}$ then? ... not always...

$$
D+A \stackrel{1}{\rightleftarrows}(D, A) \stackrel{2}{\rightleftarrows}\left(D^{+}, A^{-}\right) \stackrel{3}{\rightleftarrows} D^{+}+A^{-}
$$

Assume that the middle steps come and go quickly... so each has a small steady-state conc...

$$
\begin{aligned}
& \frac{\partial[(\mathrm{D}, \mathrm{~A})]}{\partial t}=0=-k_{2 f}[(\mathrm{D}, \mathrm{~A})]+k_{1 f}[\mathrm{D}][\mathrm{A}] \ldots \text { and thus }[(\mathrm{D}, \mathrm{~A})]=\frac{k_{1 f}[\mathrm{D}][\mathrm{A}]}{k_{2 f}} \\
& \frac{\partial\left[\left(\mathrm{D}^{+}, \mathrm{A}^{-}\right)\right]}{\partial t}=0=-k_{3 f}\left[\left(\mathrm{D}^{+}, \mathrm{A}^{-}\right)\right]+k_{2 f}[(\mathrm{D}, \mathrm{~A})] \ldots \text { and thus }\left[\left(\mathrm{D}^{+}, \mathrm{A}^{-}\right)\right]=\frac{k_{2 f}[(\mathrm{D}, \mathrm{~A})]}{k_{3 f}}
\end{aligned}
$$

\ldots which means that $\left[\left(\mathrm{D}^{+}, \mathrm{A}^{-}\right)\right]=\frac{k_{1 f} k_{2 f}[\mathrm{D}][\mathrm{A}]}{k_{2 f} k_{3 f}}=\frac{k_{1 f}[\mathrm{D}][\mathrm{A}]}{k_{3 f}}$
\ldots since $\frac{\partial\left[\mathrm{D}^{+}\right]}{\partial t}=\frac{\partial\left[\mathrm{A}^{-}\right]}{\partial t}=k_{3 f}\left[\left(\mathrm{D}^{+}, \mathrm{A}^{-}\right)\right] \ldots$ this is just equal to $k_{1 f}[\mathrm{D}][\mathrm{A}] \ldots$ and $\boldsymbol{k}_{\boldsymbol{f}, \mathbf{o b s}}=k_{1 f}$
... which is what the pre-equilibrium approximation would have predicted too, so... unexciting!

Chemical Kinetics (summary for today)

- Continuity of mass, Mass transfer, Nernst-Planck equation, Diffusion, Diffusion coefficient, Migration, Mobility, Convection, Boundary layer
- Mass action, Microscopic reversibility, Förster cube, Square schemes, Rate constants, Activation energies, Transition-state theory, MarcusHush theory, Transition-state character, Reorganization energies (outer and inner)
- Linear free energy relationships, Charge transfer across electrified interfaces, Butler-Volmer equation, Fermi's golden rule, Solid-state physics, Marcus-Gerischer theory
- Rate-determining step, Steady-state \& Pre-equilibrium approximations, Langmuir/Frumkin isotherms

