UCI PHYSICS/CHEM207 – Applied Physical Chemistry, Summer 2022 370

Lecture #13 of 14

(3: TThF, 5: MTWThF, 4: MTWTh, 2: $\underline{\mathbf{T}}$ W)

Prof. Shane Ardo Department of Chemistry University of California Irvine

Chemical Kinetics (*let's review* TWTh)

371

- T: Continuity of mass, Mass transfer, Nernst–Planck equation, Diffusion, Diffusion coefficient, Migration, Mobility, Convection, Boundary layer
- W: Mass action, Microscopic reversibility, Förster cube, Square schemes, Rate constants, Activation energies, Transition-state theory, Marcus– Hush theory, Transition-state character, Reorganization energies (outer and inner)
- Th: Linear free energy relationships, Charge transfer across electrified interfaces, Butler-Volmer equation, Fermi's golden rule, Solid-state physics, Marcus-Gerischer theory, Rate-determining step, Steady-state & Pre-equilibrium approximations, Langmuir/Frumkin isotherms

Summary of Key Equations and Equilibrium

"Jean Plaget, the Swiss psychologist who hirst studied <u>object permanence</u> in infants, argued that it is one of an infant's most important accomplishments, as, without this concept, objects would have no separate, permanent existence." — Wiki, Object permanence

(REVIEW) 375

Marcus-Hush Theory
Marcus-Hush (1950s-1960s)
theoretical (semiclassical) rate constant equation

$$k_{\text{ET}} = \frac{2\pi}{\hbar} |H_{\text{DA}}|^2 \frac{1}{\sqrt{4\pi\lambda_{\text{AB}}kT}} \exp\left(-\frac{\Delta G_{\text{AB}}^*}{kT}\right) \dots \frac{2\pi |H_{\text{DA}}|^2}{\hbar\sqrt{4\pi\lambda_{\text{AT}}kT}} \text{ has units of } s^{-1}$$
Evring-Polanyi-Evans (1930s)
Mean equation (from transition-state theory / activated complex theory)

$$k_{\text{ET}} = \frac{\kappa k_{\text{B}}T}{\kappa^2} \sum_{k=1}^{K^2} with transmission coefficient \kappa and vibrational frequency u(s1)$$

 $\begin{aligned} k_f &= \kappa v \mathcal{K}^{\#} = \frac{\kappa k_B T}{h} \mathcal{K}^{\#} \dots \text{ with transmission coefficient, } \kappa, \text{ and vibrational frequency, } v \text{ (s} \\ &\dots \text{ and } R = N_A k_B \dots \text{ and } \frac{\kappa k_B T}{h} \text{ has units of } s^{-1} \\ k_f &= \frac{\kappa k_B T}{h} \exp\left(-\frac{\Delta G^{\#}}{RT}\right) = \frac{\kappa k_B T}{h} \exp\left(\frac{\Delta S^{\#}}{R}\right) \exp\left(-\frac{\Delta H^{\#}}{RT}\right) \dots \text{ and so } A \text{ contains } \Delta S^{\#} \end{aligned}$

... what is the largest predicted pre-exponential factor at 25 °C? (161 fs)⁻¹ = (1.61 x 10^{-13} s)⁻¹

7/26/2022

(REVIEW) 376 Marcus-Hush Theory $\begin{array}{c} \underline{D + A} \longleftrightarrow \underline{D^+ + A^-} \\ \underline{D + A} \longleftrightarrow \underline{D + A^-} \\ \underline{D + A^-} \\ \underline{D + A} \longleftrightarrow \underline{D + A^-} \\ \underline{D + A^$

Charge Transfer across Electrified Interfaces

... aren't these so-called "heterogeneous error of the so-called "heterogeneous electron-transfer reactions"?... Sure. $\mathbf{P}^{\mathsf{T}}: \mathbf{For each } c_{o} \text{ and } c_{o}, \text{ electrochemical equilibrium } (j = 0) \text{ is attained via interactions"?... Sure.}$ $\mathbf{R}_{O} = \frac{\partial c_{O,Z_{O}}}{\partial t} = -\mathbf{k}_{fCO} + \mathbf{k}_{bCR}$ $\mathbf{f}_{E} = nF(-\mathbf{k}'_{f,E} c_{O,Z_{O}} + \mathbf{k}'_{b,E} c_{R,Z_{O}})$ $\dots R_{o} \text{ is a rate... with units of M/s (= mol dm^{3} s^{1}) \dots J_{E} \text{ is a current density... with units of A/cm^{2} (= C \text{ or } 2 \text{ s}^{1})}$ $\dots R_{o} \text{ is a rate... with units of M/s (= mol dm^{3} s^{1}) \dots J_{E} \text{ is a current density... with units of A/cm^{2} (= C \text{ or } 2 \text{ s}^{1})}$ $\dots R_{o} \text{ is a rate... with units of M/s (= mol dm^{3} s^{1}) \dots J_{E} \text{ is a current density... with units of A/cm^{2} (= C \text{ or } 2 \text{ s}^{1})}$ $\dots R_{o} \text{ is a rate... with units of M/s (= mol dm^{3} s^{1}) \dots J_{E} \text{ is a current density... with units of A/cm^{2} (= C \text{ or } 2 \text{ s}^{1})}$ $\dots R_{o} \text{ is a rate... with units of M/s (= mol dm^{3} s^{1}) \dots J_{E} \text{ is a current density... with units of A/cm^{2} (= C \text{ or } 2 \text{ s}^{1})}$ $\dots R_{o} \text{ is a rate... with units of M/s (= mol dm^{3} s^{1}) \dots J_{E} \text{ is a current density... with units of A/cm^{2} (= C \text{ or } 2 \text{ s}^{1})}$ $\dots R_{o} \text{ is a rate... with units of M/s (= mol dm^{3} s^{1}) \dots J_{E} \text{ is a current density... with units of A/cm^{2} (= C \text{ or } 2 \text{ s}^{1})}$ $\dots R_{o} \text{ is a rate... with onese the operation of the subcord operation of the subcord operation operation$

379 Charge Transfer across Electrified Interfaces

380 Charge Transfer across Electrified Interfaces

- Key Electrochemical Information In electrochemistry, application of a potential, E_{app}, varies the electro-chemical potential of electrons (e⁻) in the (M)etal working electrode, $\bar{\mu}_e^{\rm M}$
- Based on thermodynamics, when written as a reduction reaction, changing $\bar{\mu}_e^{\rm M}$ alters the free energy (and also the standard-state free energy) of the reactants, as $\Delta G_{\mathbf{A}} = \bar{\mu}_{e}^{\mathbf{M}} + \bar{\mu}_{0}$ (and $\Delta G_{\mathbf{A}}^{\mathbf{o}} = \bar{\mu}_{e}^{\mathbf{M}} + \bar{\mu}_{0}^{\mathbf{o}}$)
- Based on approximations, altering ΔG_A changes all ΔG values on the reaction coordinate relative to the initial ΔG_{A} , and not along the parabolic/linear shape of the reactant "surface"... Should it?

Butler-Volmer equation

381

$$\begin{split} j_E &= nF\left(k'_{b,E}c_{R,x_0} - k'_{f,E}c_{0,x_0}\right) & \dots \text{for this example, let's assume that } n = 1...\\ j_E &= Fk^0 \left\{c_{R,x_0} \exp\left(\frac{(1-\beta)F(E-E^{o'})}{RT}\right) - c_{0,x_0} \exp\left(\frac{-\beta F(E-E^{o'})}{RT}\right)\right\} & \text{Current-Potential Characteristic}\\ j_E &= j_0 \left\{\frac{c_{R,x_0}}{c_{\mathbf{k}}^*} \exp\left(\frac{(1-\beta)F\eta}{RT}\right) - \frac{c_{0,x_0}}{c_{\mathbf{0}}^*} \exp\left(\frac{-\beta F\eta}{RT}\right)\right\} & \eta = \left(E - E_{\mathbf{eq}}\right) = E_{\mathbf{app}} & \text{Current-Overpotential Equation}\\ \dots \ c^* \text{ means bulk concentration... conversion is trivial using } E_{\mathbf{eq}} = E^{o'} - \frac{RT}{R_0} \ln \frac{c_{\mathbf{k}}^*}{c_{\mathbf{0}}^*} \\ j_E &= j_0 \left\{\exp\left(\frac{(1-\beta)F\eta}{RT}\right) - \exp\left(\frac{-\beta F\eta}{RT}\right)\right\} & \text{Butter-}\\ \text{Equation} & \text{TS}_{\text{cut}}^{-1} = \left(\frac{d(\log f_E)}{d(\eta)}\right)_{\text{cut}} = \frac{-\beta F}{2.303RT} \\ \dots \ \text{assuming rapid stirring} & \text{TS}_{\mathbf{0}}^{-1} = \left(\frac{d(\log f_E)}{d(\eta)}\right)_{y=0}^{w} = \frac{(1-\beta)F}{2.303RT} \end{split}$$

 $e^{-,M} + O \rightleftharpoons R$

7/26/2022

Butler–Volmer equation

... let's examine the tradeoff of **j**_o and Tafel Slope... ... the latter has units of mV/decade..

382

Quick Quiz: Which catalyst is best? (A) $j_0 = 10^{-4} \text{ A cm}^2$, TS = 120 mV decade⁻¹ (B) $j_0 = 10^{-7} \text{ A cm}^2$, TS = 60 mV decade⁻¹ Well, it depends on the desired j_E ...

For 1 mA cm⁻², (A) is best, but...

For 1 A cm⁻², (B) is best...

 ... because catalyst (A) requires η = 480 mV, while catalyst (B) requires η = 420 mV!
 ... and neither may be "best" in practice, if

they aren't stable or selective for the reaction of interest!

Take-home point: Each current density has a corresponding overpotential!

Marcus–Gerischer Theory

386

Marcus–Gerischer Theory

Marcus–Gerischer Theory

 $D_O(\lambda, E)$

2

(2NeT

• But evidence of the inverted region is a little challenging to clearly observe

... what if Chidsey had plotted the derivative of his data on the right?

... what do you expect that would have looked like?... a nice Marcus parabola!

... I wish he had done that!

C. E. D. Chidsey, Science, 1991, 251, 919-922

0.5

388

Marcus–Gerischer Theory

 Use of a semiconductor limits the electronic states to those with (approximately) a single µ^a_a, which makes analysis of data simpler, i.e. one does not need to consider a distribution of states in the electrode

• But one cannot alter the driving force, $\Delta G_{\rm AB}^{-}$, by simply changing the electrochemical potential of electrons (c⁻) in the (S)emi(C)onductor working electrode, $\overline{\mu}_{\rm ef}^{\rm C}$, through variations in $E_{\rm app}$, because instead that typically changes the concentration of c⁻

390

How can one use a semiconductor to study the inverted region? Think solution studies... vary the molecule!

Marcus–Gerischer Theory

Marcus–Gerischer Theory

UCI PHYSICS/CHEM207 – Applied Physical Chemistry, Summer 2022

393

391

Photochemistry

- Blackbody radiation, Light–Matter interactions, Photon properties, Conservation laws
- Jablonski diagram, Internal conversion, Intersystem crossing, Kasha– Vavilov rule, Thexi state, Stokes shift, Luminescence processes
- Born–Oppenheimer approximation, Franck–Condon principle, Harmonic oscillator model, Transition dipole moment operator, Selection rules, Spin–orbit coupling, Heavy-atom effect
- Photochemical length and time scales, Electromagnetic spectrum
 Beer–Lambert law, Absorption coefficient, Einstein coefficients,
- Oscillator strength, Absorption coernicient, Einstein coernicient, Oscillator strength, Absorptionce, *E*–k diagrams

Förster Cube and Square Schemes

... before we add light... let's backtrack a bit... ... first we must understand dark thermal process

(REVIEW) 395

394


```
How are they related?

Redox: E^\circ = -\Delta G^\circ / nF

Acidity: pK_a = -\log K_a = \Delta G^\circ / (2.303RT)

Light: hc\overline{v} = \frac{hc}{\lambda} = hv = E_{photon}
```

What is the reference state for each? $E^{\circ}(H^{+}(aq)/H_{2}) = 0; pK_{a}(H^{+}(aq)) = 0; 0$

ust understand dark thermal processes...^{Z. R.} Grabowski & W. Rubaszewska, J. Chem. Soc. Forodoy Trans. 1, 1977, 73, 11–28

Photon Properties & Conservation Laws

Where does light come from? Particle Type: Boson Mass: 0 Charge: 0 Energy: $E = hv = \hbar\omega$ Linear Velocity: $\frac{c}{n} = \left(\frac{\lambda}{n}\right)\nu = \lambda'\nu$ Linear Momentum: $p = \frac{h}{\lambda'} = \frac{nhv}{c}$ ≈ 0 Linear Polarization: \vec{E} and \vec{B}

z-Direction Angular Momentum / Circular Polarization / Chirality / Helicity / Spin: $\pm \hbar = \pm \frac{h}{2\pi}$ Fermion Angular Momentum (Orbital, Spin) Magnitude: $\hbar \sqrt{J(J+1)}$ z-Direction: $m_I\hbar$, $m_I = [-J, J]$ in steps of 1 Multiplicity/Degeneracy, $g_J: 2J + 1$

397

direction of oscillation if electric field vector **X**

What value of *j* have we considered thus far? ≥2 How large is *j* for actual systems? Quite large, likely!

What is the smallest value that *j* can be? **3... but approximately 2** ... stimulated emission is tiny

Given a box at temperature, T, by what processes can heat be transferred to something inside it? Okay, now what if inside the box was a vacuum?

(Blackbody) radiation only! A + $hv_{BB} \rightleftharpoons A^*$

... at a microscopically reversible **equilibrium**, rate is equal to "**%A(v**) x PhotonFlux(v), integrated over v" ... $\overline{\mu}_{\mathbf{A}} = \overline{\mu}_{\mathbf{A}^*...}$ with additional (sun)light absorption, $\overline{\mu}_{\mathbf{A}} < \overline{\mu}_{\mathbf{A},eq}$ and $\overline{\mu}_{\mathbf{A}^*} > \overline{\mu}_{\mathbf{A}^*,eq} = \underline{useful work}!$

Turro, Chapter 1, Scheme 1.7, Page 36

Jablonski Diagram & Spin Multiplicity

401

ro, Chapter 1, Scheme 1.3, Page 13

... Angular Momentum Energy Degeneracy, $g_j:2J+1$... when $J=0, g_J=1...$ sounds like a "Singlet (S or ²X)" ... when $J=1, g_J=3...$ sounds like a "Triplet (T or ³X)"

Photochemistry (summary for today)

 Blackbody radiation, Light–Matter interactions, Photon properties, <u>Conservation laws</u>

- Jablonski diagram, Internal conversion, Intersystem crossing, Kasha– <u>Vavilov rule</u>, Thexi state, Stokes shift, Luminescence processes
- Born–Oppenheimer approximation, Franck–Condon principle, Harmonic oscillator model, Transition dipole moment operator, Selection rules, Spin–orbit coupling, Heavy-atom effect
- Photochemical length and time scales, Electromagnetic spectrum
 Beer–Lambert law, Absorption coefficient, Einstein coefficients,
- Oscillator strength, Absorption coefficient, Einstein coefficient