Lecture \#2 of 12

Prof. Shane Ardo

Department of Chemistry
University of California Irvine

Review of Physical Chemistry

Prof. Shane Ardo
Department of Chemistry
University of California Irvine

Förster Cube and Square Schemes ${ }^{(\text {UPDated/REVIEW) } 34}$

What thermodynamic term indicates whether a processes will net occur, or not, for a chemical reaction, and a single species?

Review of Physical Chemistry

- Photochemical applications
- Förster cube, Square schemes
- Thermodynamics versus Kinetics
- Schrödinger equation, Internal energy
- Free energy, (Electro)Chemical potential, Equilibrium
- Solid-state physics terminology
- Continuity of mass
- Mass action, Microscopic reversibility
- Activation energy, Rate-determining step
- Mass transfer, Transport, Steady state

Förster Cube and Square Schemes

all of these free energy terms are standardstate free energies $\left(\Delta G^{\circ}\right)$... but what is the actual free energy of the system (ΔG) ?
... let's assume that $\Delta G=0$ (equilibrium)... how could I indicate that on this slide, as a point(s), to depict the majority species present?
... now, how can one push/pull this system out of equilibrium?
... recall Le Châtelier's principle... and thus by addition of reactants or removal of products.. such as mass or light!
.. and if you don't recall all of these physical chemistry details, don't fret... we'll go over them now...
\qquad

Thermodynamics versus Kinetics

\ldots but a main benefit of thermodynamics $\left(\Delta G_{j}^{\mathrm{o}} ; \bar{\mu}_{i}^{\mathrm{o}}\right)$ is to predict kinetics $\left(k_{j f}, k_{j b} ; D_{i}\right) \ldots$
... energetics from thermodynamics dictate equilibrium concentrations...
... but it is the kinetic (and transport) properties that influence how those conditions change
upon perturbation...

rate of change of the
(c)oncentration of

species A with respect
to (t)ime, in units of

$\frac{M s^{-1}\left(m o l d m^{-3} s^{-1}\right)}{}$
this master equation describes all kinetic and transport processes... more on this later though...

Schrödinger Equation

Elegant master equation that allows one to determine internal energies, E_{n}, of a system

$$
\widehat{\boldsymbol{H}} \psi_{n}(x)=\mathbf{E}_{n} \psi_{n}(x)
$$

... but this is not good enough for photochemists where time-varying oscillating
electromagnetic fields often interact with matter... $\mathrm{E}=h \nu=\hbar \omega$ (Planck)

$$
\hat{H} \Psi_{n}(x, t)=i \hbar \frac{\partial}{\partial t} \Psi_{n}(x, t) \quad \begin{aligned}
& \mathrm{E}=m c^{2}=p c \text { (Einstein) } \\
& p=\frac{h v}{c}=\frac{h}{\lambda}=h \overline{\mathrm{v}}=\hbar k \text { (de Broglie }
\end{aligned}
$$

... so, how does one solve either of these Schrödinger equations?... We need to know \hat{H} ! $\widehat{H}=\widehat{T}+\widehat{V}$
... um... well that didn't really help us at all... anyway, so instead, we need to know \hat{T} and \hat{V} ?
$\hat{T}(x)=\mathrm{KE}=\frac{1}{2} m \hat{v}^{2}=\frac{\hat{p}^{2}}{2 m} \ldots$ with (\hat{p}) momentum $=(m)$ ass $\times(\hat{v})$ elocity $=-i \hbar \frac{\partial}{\partial x} \ldots$ Wow, right? $\hat{V}(x)=\mathrm{PE}=0 \ldots$ for particle-in-a-box...
$\hat{V}(x)=\frac{1}{2} k_{f} x^{2}=\frac{1}{2} m \omega^{2} x^{2} \ldots$ for harmonic oscillator, with k_{f} (force const), ω (angular freq)...
$\hat{V}(r)=-\frac{q^{2}}{4 \pi \varepsilon_{0} r} \ldots$ for Hydrogen atom, with $F=q N_{\mathrm{A}}$ (Faraday const), ε_{0} (vacuum permittivity)

Schrödinger Equation

Poisson's Equation (from Gauss's law
But you still didn't tell us why we need to recall this equation

$$
\hat{H} \psi_{n}(x)=(\hat{T}+\hat{V}) \psi_{n}(x)=\mathrm{E}_{n} \psi(x)
$$

... we need to fill internal energies, E_{n}, with particles... okay. for a point charge.... $\begin{gathered}\text { look familiar? }\end{gathered} \pi^{\phi(r)=\frac{q}{4 \pi \varepsilon r}}$
... and that under most chemical conditions, potential energy, $\hat{V}(x)$, is electrostatic, $\phi(x)$
... which is actually not so limiting because there are only 4-ish forces of Nature
... and while we're at it, let's (re)learn overlap integral ($S_{n m}$), expectation value ($\left.\left\langle p_{n}\right\rangle\right)$, bra-
ket notation $\left(\left\langle\psi_{n} \mid \psi_{m}\right\rangle\right)$, and exponential tunneling probability...
Probability Density $(x)=\left|\psi_{n}(x)\right|^{2}=\psi_{n}^{*}(x) \psi_{n}(x)$
... with $\psi_{n}^{*}(x)$ (complex conjugate)
Overlap integral, $S_{n m}=\int_{-\infty}^{\infty} \psi_{n}^{*}(x) \psi_{m}(x) d x=\left\langle\psi_{n} \mid \psi_{m}\right\rangle$
... with $\left\langle\Psi_{n}\right|$ ("bra") and $\left|\Psi_{m}\right\rangle$ ("ket")
Mean Energy, $\left\langle\mathrm{E}_{n}\right\rangle=\frac{\int_{-\infty}^{\infty} \Psi_{n}^{*}(x, t) \hat{H} \Psi_{n}(x, t) d x}{\int_{-\infty}^{\infty} \Psi_{n}^{*}(x, t) \Psi_{n}(x, t) d x}=\left\langle\Psi_{n}\right| \hat{H}\left|\Psi_{n}\right\rangle=\langle\hat{H}\rangle$

Free Energy

Now that we recall where internal energy, \mathbf{E}, comes from... also recall enthalpy, $\mathbf{H}=\mathrm{E}+\boldsymbol{p} \boldsymbol{V}$ Gibbs free energy, G = H - TS, and Entropy, S... what in the world is free energy?

$$
\text { total differentials are facile... for example, } \mathrm{dH}=\mathrm{dE}+p \mathrm{~d} V+V \mathrm{~d} p \text { and } \mathrm{dG}=\mathrm{dH}-T \mathrm{dS}-\mathrm{S} \mathrm{~d} T
$$

Well, it stems from the laws of thermodynamics: Are these state functions? (1) Conservation of Energy: $\Delta \mathrm{E}_{\text {universe }}=0 \mathrm{~J} ; \mathrm{dE}_{\text {system }}=\mathrm{d} Q+\mathrm{dw} \ldots$ where Q is heat and \boldsymbol{w} is work (2) Increase of Entropy: $\Delta \mathrm{S}_{\text {universe }} \geq 0 \mathrm{~J} \mathrm{~K}^{-1}, \Delta \mathrm{G}_{\text {system }} \leq 0 \mathrm{~J}$, and d $Q \leq T \mathrm{dS}$ system
(3) Lower Limit to Entropy and Temperature: $S_{\text {system }} \geq 0 \mathrm{~J} \mathrm{~K}^{-1}, \mathrm{~T} \geq 0 \mathrm{~K}$

Photochemists are primarily interested in non-pd V work, $\mathrm{d} w$ ', and so using total differentials..
By the $1^{\text {st }}$ law, $\mathrm{dE}_{\text {system }}=\mathrm{d} Q+\mathrm{d} w^{\prime}+-p \mathrm{~d} V \ldots$ and thus $\mathrm{dH}_{\text {system }}=\mathrm{d} Q+\mathrm{d} w^{\prime}+V \mathrm{~d} p$
And by the $2^{\text {nd }} l a w, d w^{\prime}=\mathrm{dH}_{\text {sys }}-T \mathrm{dS}_{\text {sys }}-V \mathrm{~d} p \ldots$ and thus $\mathrm{d} w^{\prime}=\mathrm{dG}_{\text {sys }}+\mathrm{S}_{\text {sys }} \mathrm{d} T-V \mathrm{~d} p$
flow possible from internal energy \rightarrow necessary Q flow
At constant T and $p,\left(\mathbf{d G}_{\text {sys }}\right)_{T, p}=\mathbf{d} \boldsymbol{w}^{\prime} \ldots$ in chemistry, \boldsymbol{w}^{\prime} is reversible (photo)(electro)chemical work! ... most chemists perform experiments at constant (ambient) pressure and (ambient) temperature ... but what are examples of reversible (photo)(electro)chemical work?... Chemical reactions!

(Electro)Chemical Potential

What if we could determine the contribution from each species, i, to the ability of the system to perform useful (photo)(electro)chemical work? That might be good to know, right? Well, we're in luck... that is the definition of the (electro)chemical potential: $\bar{\mu}_{i}=\left(\frac{\partial G}{\partial n_{i}}\right)_{T, p, n_{j \neq i}}$... it's the change in Gibbs free energy, ∂G, for every infinitesimal change in the amount, ∂n_{i} with $T, p, n_{j \neq i}$ held constant
So, let's expand the differential as $d G=\left(\sum_{i}\left(\frac{\partial G}{\partial n_{i}}\right)_{T, p, n_{j \neq i}} \partial n_{i}\right)$ and integrate from 0 to some amount of each n_{i} to form (R)eactants, and separately to form (P)roducts, and one gets $G_{\mathrm{R}}=\sum_{r} \bar{\mu}_{r} n_{r} \quad G_{\mathrm{P}}=\sum_{p} \bar{\mu}_{p} n_{P}$

So, ΔG for converting reactants to products is then $\Delta G_{\mathrm{rxn}}=\sum_{p} \bar{\mu}_{p} n_{p}-\sum_{r} \bar{\mu}_{r} n_{r}$... which seems to make sense... to me at least
. and there is nothing special about "electro" above... this could be "magneto", "gravito", "weak force-o", etc.

(Electro)Chemical Potential

So, let's take a deeper look at this process for a simple reaction: $A \rightleftarrows B$
Assume this reaction has a negative free energy difference... its infinitesimal change is... $d G=\left(\frac{\partial G}{\partial n_{\mathrm{A}}}\right) \partial n_{\mathrm{A}}+\left(\frac{\partial G}{\partial n_{\mathrm{B}}}\right) \partial n_{\mathrm{B}}=\bar{\mu}_{\mathrm{A}} \partial n_{\mathrm{A}}+\bar{\mu}_{\mathrm{B}} \partial n_{\mathrm{B}} \ldots$ but since every loss of A has a gain of B $d G=\left(\bar{\mu}_{\mathrm{B}}-\bar{\mu}_{\mathrm{A}}\right) \partial n_{\mathrm{B}} \ldots$ and so this is a detailed thermodynamic version of an ICE table!

$$
\underset{\text { (I)nitial }}{\mathrm{A}} \mathrm{~B} \quad \begin{array}{cc}
\mathrm{A}-x ; \mathrm{B}+x & \text { (C)hange }
\end{array}
$$

But hold on... at equilibrium, what is $d G$? 0 Yet based on the equation, won't all A turn into B ?
\ldots the answer is that $\bar{\mu}_{i}$ are not constants with $\partial n_{i} \ldots$ and ultimately $\bar{\mu}_{\mathrm{B}}^{\alpha}=\bar{\mu}_{\mathrm{A}}^{\alpha}$, at equilibrium
... and seen (next) by its definition: $\bar{\mu}_{i}^{\alpha}=\bar{\mu}_{i}^{0, \alpha}+k_{\mathrm{B}} T \ln a_{i}^{\alpha}+z_{i} q \phi^{\alpha}$ in phase $\alpha \ldots$
\qquad
\square
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

(Electro)Chemical Potential

So where does the fundamental equation, $\bar{\mu}_{i}^{\alpha}=\bar{\mu}_{i}^{\mathrm{o}, \alpha}+k_{\mathrm{B}} T \ln a_{i}^{\alpha}+z_{i} q \phi^{\alpha}(x)$, come from?
\ldots recall that, by definition, $\mathrm{d} w^{\prime}=\mathrm{dG}_{\text {sys }}+\mathrm{S}_{\text {sys }} \mathrm{d} T_{\text {sys }}-V_{\text {sys }} \mathrm{d} p_{\text {sys }}$ and $\bar{\mu}_{i}=\left(\frac{\partial G}{\partial n_{i}}\right)_{T_{\text {sys }}, p_{\text {sys }}, n_{j \neq i}}$
\ldots and thus for species i, at constant $T_{\text {sys }}$ and $p_{\text {sys }} \cdots$ one has $\mathbf{d} w^{\prime} / \mathbf{d} n_{i}=\bar{\mu}_{i}-V_{i} \mathrm{~d} p_{i}$... where V_{i} is partial molar volume, $\left(\frac{\partial V}{\partial n_{i}}\right)_{T, p, n_{j \neq i}}$, and p_{i} is partial pressure
... then assuming ideal gas law behavior, $V_{i}=k_{\mathrm{B}} T / p_{i} \ldots$ and so one has $\bar{\mu}_{i}=k_{\mathrm{B}} T\left(1 / p_{i}\right) \mathrm{d} p_{i}+\mathrm{d} w_{i}^{\prime}$
... integration from $\bar{\mu}_{i}^{0, \alpha}$ to $\bar{\mu}_{i}^{\alpha}$ results in $\bar{\mu}_{i}^{\alpha}=\bar{\mu}_{i}^{0, \alpha}+k_{\mathrm{B}} T \ln \left(p_{i}^{\alpha} / p_{i}^{0, \alpha}\right)+w_{i}{ }_{i}$
\ldots and when species $i \underline{\text { is non-ideal, the natural } \log \text { term is more accurate as } a_{i}^{\alpha}=\gamma_{i}^{\alpha}\left(p_{i}^{\alpha} / p_{i}^{\mathbf{0 , \alpha}}\right), ~(1)}$
\ldots and/or when species i is charged, $z_{i} \neq 0$, then spatial effects due to $\phi^{\alpha}(x)$ (E-fields) matter

$$
\bar{\mu}^{\alpha}=\left(\frac{\partial G}{\partial n}\right)_{T, p}=\frac{G}{n}
$$

$$
\bar{\mu}_{i}^{\alpha}=\left(\frac{\partial G_{m i x}}{\partial n_{i}}\right)_{T, p, n_{j \neq i}}^{n_{i}}
$$

... recall that for species in solution, $a_{i}^{\alpha}=\gamma_{i}^{\alpha} \frac{c_{i}^{\alpha}}{c_{i}^{\alpha, \alpha}}$... where γ_{i}^{α} are activity coefficients	Toutesas sminiota-				
	Compus.	nom	sunbinaue	tatar	Uume
	Sedider liysial Sidues	Howat	Rere here niven		$r \rightarrow 10 \mathrm{ra}$
	tiom	now	Matmotaiderat		,
				*,	¢
$A \rightleftarrows B$					

And back to $d G=\left(\bar{\mu}_{\mathrm{B}}^{\alpha}-\bar{\mu}_{\mathrm{A}}^{\alpha}\right) \partial n_{\mathrm{B}} \ldots$ the latter ∂n_{B} is like the progress of the reaction, and so... $\Delta G=\left(\bar{\mu}_{\mathrm{B}}^{\alpha}-\frac{v_{\mathrm{A}}}{v_{\mathrm{B}}} \bar{\mu}_{\mathrm{A}}^{\alpha}\right) \ldots$ with v_{A} (stoichiometric number)

[^0]\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Entropic Mixing

Now in the previous example, imagine that A and B are ideal gases. ... they cannot react... n_{A} and $n_{\mathrm{B}}(\mathrm{mol})$ are independent and constant

Then, using $\bar{\mu}_{i}^{\alpha}=\bar{\mu}_{i}^{\mathrm{o}, \alpha}+R T \ln a_{i}^{\alpha}+z_{i} F \phi_{x}^{\alpha}$ $\bar{\mu}_{\mathrm{A}}^{\alpha}=\bar{\mu}_{\mathrm{A}}^{\mathrm{o}, \alpha}+R T \ln a_{\mathrm{A}}^{\alpha}+(0) F \phi_{x}^{\alpha}$ $\bar{\mu}_{\mathrm{B}}^{\alpha}=\bar{\mu}_{\mathrm{B}}^{\mathrm{o,} \mathrm{\alpha}}+R T \ln a_{\mathrm{B}}^{\alpha}+(0) F \phi_{x}^{\alpha}$ classical version of \hat{V} for effects outside of the
Hamiltonian "box"
Defining the free energy change upon mixing is facile as $G_{\text {initial }}=\bar{\mu}_{\mathrm{A}}^{\alpha} n_{\mathrm{A}}+\bar{\mu}_{\mathrm{B}}^{\alpha} n_{\mathrm{B}} \quad G_{\text {final }}=\bar{\mu}_{\mathrm{A}, \mathrm{eq}}^{\alpha} n_{\mathrm{A}}+\bar{\mu}_{\mathrm{B}, \mathrm{eq}}^{\alpha} n_{\mathrm{B}}$ $\Delta G_{\text {mix }}=n_{\mathrm{A}}\left(R T \ln \frac{a_{\mathrm{A}, \mathrm{eq}}^{\alpha}}{a_{\mathrm{A}}^{\alpha}}\right)+n_{\mathrm{B}}\left(R T \ln \frac{a_{\mathrm{B}, \mathrm{eq}}^{\alpha}}{a_{\mathrm{B}}^{\alpha}}\right)$

... with total number, $n=n_{\mathrm{A}}+n_{\mathrm{B}}$, and mole fraction, $x_{i}=\frac{n_{i}}{n} \ldots \quad$ Mole frown
$\Delta G_{\text {mix }}=n R T\left(x_{\mathrm{A}, \mathrm{eq}}^{\alpha} \ln x_{\mathrm{A}, \mathrm{eq}}^{\alpha}+x_{\mathrm{B}, \mathrm{eq}}^{\alpha} \ln x_{\mathrm{B}, \mathrm{eq}}^{\alpha}\right)=n R T(\ln 0.5)=-0.69 n R T$
... since this assumed ideal gases, $\Delta H_{\text {mix }}=0$ and the driving force is purely entropic $\left(\Delta S_{\text {mix }} \geq 0\right) \ldots$
... this is the driving force for diffusion.

(Electro)Chemical (and Thermal) Equilibrium

Given $\Delta G=\left(\bar{\mu}_{\mathrm{B}}^{\alpha}-\bar{\mu}_{\mathrm{A}}^{\alpha}\right) \ldots$ which could have v_{i} too...
and using $\bar{\mu}_{i}^{\alpha}=\bar{\mu}_{i}^{0, \alpha}+R T \ln a_{i}^{\alpha}+z_{i} F \phi_{x}^{\alpha}$
$\Delta G=\bar{\mu}_{\mathrm{B}}^{\mathrm{o}, \alpha}+R T \ln a_{\mathrm{B}}^{\alpha}+z_{\mathrm{B}} F \phi_{x}^{\alpha}$

$$
\left(\bar{\mu}_{\mathrm{A}}^{0^{0, \alpha}}+R T \ln a_{\mathrm{A}}^{\alpha}+z_{\mathrm{A}} F \phi_{x}^{\alpha}\right)
$$

Which means that, at a single position, x_{0},
$\Delta G=\left(\bar{\mu}_{\mathrm{B}}^{\mathrm{o}, \alpha}-\bar{\mu}_{\mathrm{A}}^{\mathrm{o}, \alpha}\right)+R T \ln \frac{a_{\mathrm{B}}^{\alpha}}{a_{\mathrm{A}}^{\alpha}}+\Delta z F(0)$
$\Delta G=\Delta G^{\mathrm{o}, \alpha}+R T \ln Q \ldots$ where $Q=\frac{a_{\mathrm{B}}^{\alpha}}{a_{\mathrm{A}}^{\alpha}}$, and \ldots
$\Delta G=\Delta G^{0, \alpha}+R T \ln Q^{\prime} \ldots$ where $Q^{\prime}=\frac{c_{\mathrm{B}}^{\alpha} / c_{\mathrm{B}}^{\mathrm{o}, \alpha}}{c_{\mathrm{A}}^{\alpha} / c_{\mathrm{A}}^{\mathrm{o}, \alpha}}$
... where $\Delta G^{0, \alpha}$ contains the activity coefficients, γ_{i}^{α}

For any substance: $\mu_{j}^{\beta}=\mu_{i}^{n}+R T \ln a_{j}^{\beta}$
For any pure phase at unit activity $\rho_{C}=\mu_{i}$
For dectrons in a metal $(z=-1): \overline{n_{c}=}=\mu_{c}^{\text {to }}-F \sigma^{\circ}$
For equilibrium of species i between phases α and $\beta_{i} \beta_{1}-\beta_{1}^{3}$

At equilibrium, $\bar{\mu}_{\mathrm{B}}-\bar{\mu}_{\mathrm{A}}=0=\Delta G^{0 \prime, \alpha}+R T \ln Q_{\mathrm{eq}}^{\prime}$, so $\Delta G^{\mathrm{o}, \alpha}=-R T \ln K^{\prime}$ with $K^{\prime}=\frac{c_{\mathrm{B}, \text { eq }}^{\alpha} / c_{\mathrm{B}}^{\mathrm{o}, \alpha}}{c_{\mathrm{A}, \mathrm{eq}}^{\alpha} / c_{\mathrm{A}}^{0, \alpha}}$

okay... now let's try this again...

(UPDATED) 49

Förster Cube and Square Schemes

... hopefully this made a little more sense this time around... and if not, let's keep on trying!
2. R. Grabowski \& W. Rubaszewska, J. Chem. Soc. Faraday Trons. 1, 1977, 73, 11-28
\qquad

What thermodynamic term indicates whether a processes will net occur, or not, for a chemical reaction, and a single species?

[^0]: ... when $\Delta G<0$ the reaction is exoergic/exergonic, and net proceeds as written
 .. when $\Delta G>0$ the reaction is endoergic/endergonic, and net proceeds opposite of as written when $\Delta G=0$ the reaction is at equilibrium and proceeds equally in both directions (net is 0)

