Lecture \#3 of 12

Prof. Shane Ardo
Department of Chemistry
University of California Irvine

Review of Physical Chemistry

Prof. Shane Ardo

Department of Chemistry
University of California Irvine

... all of these free energy terms are standardstate free energies $\left(\Delta G^{\circ}\right)$... but what is the actual free energy of the system (ΔG) ?
... let's assume that $\Delta G=0$ (equilibrium)... how could I indicate that on this slide, as a point(s), to depict the majority species present?
... now, how can one push/pull this system out of equilibrium?
... recall Le Châtelier's principle... and thus by addition of reactants or removal of products... such as mass or light!
... hopefully this made a little more sense this time around... and if not, let's keep on trying!

Today’s Critical Guiding Question

What thermodynamic term indicates whether a processes will net occur, or not, for a chemical reaction, and a single species... and uniquely for today, how does it allow us to quantitatively predict kinetic information?

Review of Physical Chemistry

- Photochemical applications
- Förster cube, Square schemes
- Thermodynamics versus Kinetics
- Schrödinger equation, Internal energy
- Free energy, (Electro)Chemical potential, Equilibrium
- Solid-state physics terminology
- Continuity of mass
- Mass action, Microscopic reversibility
- Mass transfer, Transport, Steady state

Solid-State Physics Terminology

molecular photochemistry
solid-state photophysics
condensed-matter photophysical chemistry

... is this most relevant to internal energy (Schrödinger equation) or free energy (reactivity)?

Solid-State Physics Terminology

$\mathrm{Si}_{\mathrm{CB}}\left(\mathrm{h}^{+}\right)+\mathrm{Si}_{\mathrm{VB}}\left(\mathrm{e}^{-}\right) \rightleftarrows \mathrm{Si}_{\mathrm{CB}}\left(\mathrm{e}^{-}\right)+\mathrm{Si}_{\mathrm{VB}}\left(\mathrm{h}^{+}\right)$

At equilibrium,

$$
\bar{\mu}_{\mathrm{CB}\left(\mathrm{~h}^{+}\right)}^{\mathrm{Si}}+\bar{\mu}_{\mathrm{VB}\left(\mathrm{e}^{-}\right)}^{\mathrm{Si}}=\bar{\mu}_{\mathrm{CB}\left(\mathrm{e}^{-}\right)}^{\mathrm{Si}}+\bar{\mu}_{\mathrm{VB}\left(\mathrm{~h}^{+}\right)}^{\mathrm{Si}}
$$

As reference states, it is useful to define

$$
\bar{\mu}_{\mathrm{CB}\left(\mathrm{~h}^{+}\right)}^{\mathrm{Si}}=\bar{\mu}_{\mathrm{VB}\left(\mathrm{e}^{-}\right)}^{\mathrm{Si}}=0
$$

... you can define up to one more $\bar{\mu}_{i}^{\mathrm{Si}}$, but the last $\bar{\mu}_{i}^{\text {Si }}$ has to be defined based on calorimetry data

$$
\mathbf{E}_{\mathrm{F}, \mathrm{e}^{-}}=\bar{\mu}_{\mathrm{e}^{-}}
$$

$$
\begin{array}{ll}
\text { Anyway... therefore, } & \mathbf{E}_{\mathrm{F}, \mathrm{e}^{-}}=\mu_{\mathrm{e}^{-}} \\
\bar{\mu}_{\mathrm{CB}\left(\mathrm{e}^{-}\right)}^{\mathrm{Si}}=-\bar{\mu}_{\mathrm{VB}\left(\mathrm{~h}^{+}\right)}^{\mathrm{Si}} & \mathbf{E}_{\mathrm{F}, \mathrm{~h}^{+}}=-\bar{\mu}_{\mathrm{h}^{+}} \\
\mathbf{E}_{\mathrm{F}, \mathrm{e}^{-}}=\mathbf{E}_{\mathrm{F}, \mathrm{~h}^{+}} &
\end{array}
$$

(b) p-TYPE

(c) n-TYPE WITH

Fig. 2-Electrostatic potential ψ, Fermi level φ and quasi Fermi levels φ_{p} and φ_{n}. (In order to show electrostatic potential and energies on the same ordinates, the energies of holes, which are minus the energies of electrons, are plotted upwards in the figures in this paper.)

Förster Cube and Square Schemes

... all of these free energy terms are standardstate free energies $\left(\Delta G^{\circ}\right)$... but what is the actual free energy of the system (ΔG) ?
... let's assume that $\Delta G=0$ (equilibrium)... how could I indicate that on this slide, as a point(s), to depict the majority species present?
... now, how can one push/pull this system out of equilibrium?
... recall Le Châtelier's principle... and thus by addition of reactants or removal of products... such as mass or light!
... hopefully this made a little more sense this time around ${ }^{2}$... and if not, let's keep on trying!

Thermodynamics versus Kinetics

... but a main benefit of thermodynamics $\left(\Delta G_{j}^{0} ; \bar{\mu}_{i}^{0}\right)$ is to predict kinetics $\left(k_{j f}, \boldsymbol{k}_{j b} ; D_{i}\right) \ldots$
... energetics from thermodynamics dictate equilibrium concentrations...
... but it is the kinetic (and transport) properties that influence how those conditions change

.. this master equation describes all kinetic and transport processes... let's go over it in more detail...

Continuity of Mass

"Jean Piaget, the Swiss psychologist who first studied object permanence in infants, argued that it is one of an infant's most important accomplishments, as, without this concept, objects would have no separate, permanent existence."

- Wiki, Object permanence

Mass Action / Microscopic Reversibility

$$
\begin{aligned}
& A \rightleftarrows B \\
& \frac{\partial c_{\mathrm{A}, z_{0}}}{\partial t}=\sum R_{\mathrm{A}, j} \quad \Delta G^{\alpha}=\Delta G^{\mathrm{o}, \alpha}+R T \ln Q \ldots \text { where } Q=\frac{a_{\mathrm{B}}^{\alpha}}{a_{A}^{\alpha}}=\frac{\gamma_{\mathrm{B}}^{\alpha}\left(c_{\mathrm{B}}^{\alpha} / c_{\mathrm{B}}^{\mathrm{o}, \alpha}\right)}{\gamma_{\mathrm{A}}^{\alpha}\left(c_{A}^{\alpha} / c_{A}^{0, \alpha}\right)} \\
& \frac{\partial t}{}=\sum_{j} R_{\mathrm{A}, j} \\
& \text { (Chemists should be yawning) } \\
& R_{\mathrm{A}, f}=-\boldsymbol{k}_{\boldsymbol{f}} a_{\mathrm{A}} \quad R_{\mathrm{B}, f}=+\boldsymbol{k}_{\boldsymbol{f}} a_{\mathrm{A}} \\
& R_{\mathrm{A}, b}=+\boldsymbol{k}_{b} a_{\mathrm{B}} \quad R_{\mathrm{B}, b}=-\boldsymbol{k}_{b} a_{\mathrm{B}} \\
& \text { - Law of mass action } \\
& \text { - Principle of microscopic } \\
& \text { reversibility } \\
& \ldots \text { and in solid-state physics... } R_{\mathrm{e}^{-} \text {,total }}=\sum_{j} \mathrm{Gen}_{\mathrm{e}^{-}, j}-\sum_{j} \operatorname{Rec}_{\mathrm{e}^{-}, j} \\
& \boldsymbol{k}_{j}(\mathrm{M} / \mathrm{s}) \ldots \text { a rate! } \\
& \boldsymbol{k}_{\boldsymbol{j}}^{\prime}\left(\mathrm{s}^{-1}\right) \ldots \text { an inverse time constant! }
\end{aligned}
$$ Now, consider the reaction to be at equilibrium... $\Delta G^{\alpha}=0=\Delta G^{0, \alpha}+R T \ln Q^{\prime}=\bar{\mu}_{\mathrm{B}}^{\alpha}-\bar{\mu}_{\mathrm{A}}^{\alpha}$ So, $\Delta G^{0, \alpha}=-R T \ln K^{\prime}$, with $K^{\prime}=\frac{c_{\text {Beeq }}^{\alpha} / c_{\mathrm{B}}^{0, \alpha}}{c_{\mathrm{A}, \text { eq }}^{\alpha} / /_{\mathrm{A}}^{0, \alpha} \ldots \text {.. and, of course, } K^{\prime}=\exp \left(-\frac{\Delta G^{0, \alpha}, \alpha}{R T}\right) ~}$ But also, $\frac{\partial c_{\mathrm{A}}}{\partial t}=0=-k_{f} a_{\mathrm{A}, \mathrm{eq}}^{\alpha}+k_{b} a_{\mathrm{B}, \mathrm{eq}}^{\alpha} \cdots \frac{k_{f}}{k_{b}}=\frac{a_{\mathrm{B}}^{\alpha}, \mathrm{eq}}{a_{\mathrm{A}, \text { eq }}^{\alpha}}=K=K^{\prime} \frac{\gamma_{\mathrm{B}}^{\alpha}}{\gamma_{\mathrm{A}}^{\alpha}}$... it can get messy

Or equivalently, $\frac{\partial c_{\mathrm{A}}}{\partial t}=0=-\boldsymbol{k}_{\boldsymbol{f}}^{\prime} c_{\mathrm{A}, \mathrm{eq}}^{\alpha}+\boldsymbol{k}_{\boldsymbol{b}}^{\prime} c_{\mathrm{B}, \text { eq } \cdots}^{\alpha} \cdots \frac{\boldsymbol{k}_{f}^{\prime}}{\boldsymbol{k}_{\boldsymbol{b}}^{\prime}}=\frac{c_{\mathrm{B}}^{\alpha}, \mathrm{eq}}{c_{\mathrm{A}, \mathrm{eq}}^{\alpha}}=K^{\prime} \frac{c_{\mathrm{B}}^{0, \alpha}}{c_{\mathrm{A}}^{0, \alpha}}=K \frac{\gamma_{\mathrm{A}}^{\alpha} c_{\mathrm{B}}^{0, \alpha}}{\gamma_{\mathrm{B}}^{\alpha} c_{\mathrm{A}}^{0 . \alpha}}$

1D Transport in Liquids (solids are simpler)

$$
\frac{\partial c_{\mathrm{A}, z_{0}}}{\partial t}=-\frac{\partial \mathbf{N}_{\mathrm{A}}}{\partial z}
$$

(MechEs should be yawning)

$$
\mathbf{N}_{\mathrm{A}}=-\left(\frac{D_{\mathrm{A}} c_{\mathrm{A}}}{R T}\right) \frac{\partial \bar{\mu}_{\mathrm{A}}}{\partial z}+v c_{\mathrm{A}}
$$

... there are many driving forces for flux of species... ... convection $(v c)$ is just one (e.g., $d T / d x$)

Group terms... then mass transfer resembles mass action (assume $v=0$ for simplicity)...

$$
\begin{aligned}
& \mathbf{N}_{\mathrm{A}}=-\boldsymbol{D}_{\mathbf{A}} \frac{\boldsymbol{\partial}\left(\overline{\boldsymbol{\mu}}_{\mathbf{A}} / \boldsymbol{R} \boldsymbol{T}\right)}{\boldsymbol{\partial z}} c_{\mathrm{A}} \quad \begin{array}{l}
\text { What are the directions for the dimensions of } \boldsymbol{D}_{\mathbf{A}} ? \\
\text { BOLD }\left(\left(\mathrm{cm}^{2} / \mathrm{s}\right) / \mathrm{cm}\right)=\mathrm{cm} / \mathrm{s} \ldots \text { a velocity! } \\
\ldots \text { and with } \frac{\partial}{\partial z^{\prime}} \text {, units are } \mathrm{s}^{-1} \ldots \text { an inverse time constant! } \\
\ldots \text { and that equals zero at steady state }
\end{array} \\
& \text { (Recall that... } R_{\mathrm{A}, \text { total }}=-\boldsymbol{k}_{\boldsymbol{f}}^{\prime} c_{\mathrm{A}}+\boldsymbol{k}_{\boldsymbol{b}}^{\prime} c_{\mathrm{B}} \ldots \text { with } \boldsymbol{k}_{\boldsymbol{j}}^{\prime}\left(\mathrm{s}^{-1}\right) \text {, an inverse time constant!) }
\end{aligned}
$$

1D Transport in Solids

66
$\operatorname{Flux}_{z, e}=\mathbf{N}_{e}=-\frac{\sigma_{e}}{F^{2}} \frac{d \overline{\boldsymbol{\mu}}_{e}}{d z}$
Ref $\bar{\mu}_{i}^{\alpha}=\left(\frac{\partial G}{\partial n_{i}}\right)_{T, p, n_{j \neq i}}$
(z is a direction; e means $z_{e}=-1$)
$\frac{d \bar{\mu}_{e}}{d z}$ dictates directionality
... multiply by $\sigma_{e}=\frac{F^{2} D_{e} c_{e}}{R T}$ to get relative rate ... multiply Flux ${ }_{z, e}$ by " $z_{e} F$ " to get $J_{z, e}$

Solar cell experts say colloquial phrases like "band bending for charge separation" and "selective contacts"... I'm not a fan

Band diagram

"Ardo" diagram A hybrid internal energy / free energy diagram shows several useful things at once, but (possibly usefully) glosses over details of other transport processes... let's see which ones...

1D Transport in Solids (liquids are "harder")

Let's expand \quad Flux $_{z, e}=-\frac{\sigma_{e}}{F^{2}} \frac{d \overline{\boldsymbol{\mu}}_{e}}{d z}-S_{e, \boldsymbol{T}_{e}} \frac{d \boldsymbol{T}_{e}}{d z} \quad\left(\frac{\boldsymbol{\partial} \boldsymbol{G}}{\boldsymbol{\partial} \boldsymbol{n}_{\boldsymbol{i}}}\right)_{\boldsymbol{T}, \boldsymbol{p}, \boldsymbol{n}_{\boldsymbol{j} \neq \boldsymbol{i}}}=\overline{\boldsymbol{\mu}}_{\boldsymbol{i}}=\boldsymbol{\mu}_{\boldsymbol{i}}+z_{i} q \Phi$
the total
differential... \quad Flux $_{z, e}=-\frac{D_{e} n_{e}}{k \boldsymbol{T}_{e}}\left(\frac{d \boldsymbol{\mu}_{e}}{d z}-q \frac{d \phi}{d z}\right)-S_{e, \boldsymbol{T}_{e}} \frac{d \boldsymbol{T}_{e}}{d z} \quad \quad \boldsymbol{\mu}_{\boldsymbol{i}}=\mu_{i}^{0}+k \boldsymbol{T}_{\boldsymbol{i}} \ln \boldsymbol{a}_{\boldsymbol{i}}=\mu_{i}^{0}+k \boldsymbol{T}_{i} \ln \left(\frac{\gamma_{i} \boldsymbol{n}_{i}}{n_{i}^{0}}\right)$
... assuming a species, e, with
valency, z_{e}, equal to -1
... other species may have different values for every

$$
\operatorname{Flux}_{z, e}=-D_{e}\left(\frac{n_{e}}{k \boldsymbol{T}_{e}} \frac{d \mu_{e}^{0}}{d z}+\frac{n_{e}}{\gamma_{e}} \frac{d \gamma_{e}}{d z}+\frac{d n_{e}}{d z}-\frac{n_{e}}{n_{e}^{0}} \frac{d n_{e}^{0}}{d z}+\frac{n_{e}}{\boldsymbol{T}_{e}}\left(\ln \frac{\gamma_{e} n_{e}}{n_{e}^{\circ}}\right) \frac{d \boldsymbol{T}_{e}}{d z}-\frac{q n_{e}}{k \boldsymbol{T}_{e}} \frac{d \phi}{d z}\right)-S_{e, \boldsymbol{T}_{e}} \frac{d \boldsymbol{T}_{e}}{d z}
$$ term, except ϕ

$$
\mathrm{Flux}_{z, e}=-\frac{D_{e} n_{e}}{k \boldsymbol{T}_{e}}\left(\frac{d \mu_{e}^{0}}{d z}+\frac{k \boldsymbol{T}_{e}}{\gamma_{e}} \frac{d \gamma_{e}}{d z}+\frac{k \boldsymbol{T}_{e}}{n_{e}} \frac{d n_{e}}{d z}-\frac{k \boldsymbol{T}_{e}}{n_{e}^{0}} \frac{d n_{e}^{0}}{d z}+k\left(\ln \frac{\gamma_{e} n_{e}}{n_{e}}\right) \frac{d \boldsymbol{T}_{e}}{d z}-q \frac{d \phi}{d z}\right)-S_{e, T_{e}} \frac{d \boldsymbol{T}_{e}}{d z}
$$

Drift-Diffusion

$$
\text { Flux }_{z, e}=-D_{e} \frac{d n_{e}}{d z}+\frac{q D_{e} n_{e}}{k T_{e}} \frac{d \Phi}{d z} \quad \ldots \text { assuming spatially invariant } \mu_{e}^{0}, \gamma_{e}, n_{e}^{0}, T_{e}
$$

equation

$$
\mathrm{Flux}_{z, e}=-D_{e} n_{e}\left(\frac{d \mu_{e}^{0}}{k \boldsymbol{T}_{e} d z}+\frac{d\left(\ln \boldsymbol{\gamma}_{e}\right)}{d z}+\frac{d\left(\ln n_{e}\right)}{d z}-\frac{d\left(\ln n_{e}^{0}\right)}{d z}-\frac{d(q \phi)}{k \boldsymbol{T}_{e} d z}\right)-\boldsymbol{D}_{n_{e}, \boldsymbol{\gamma}_{e}, n_{e}^{0}, \boldsymbol{T}_{e}} \frac{d \boldsymbol{T}_{e}}{d z}
$$

1D Transport in Solids

(RECALL)
68
$\operatorname{Flux}_{z, e}=\mathbf{N}_{e}=-\frac{\sigma_{e}}{F^{2}} \frac{d \overline{\boldsymbol{\mu}}_{e}}{d z}$
Ref $\bar{\mu}_{i}^{\alpha}=\left(\frac{\partial G}{\partial n_{i}}\right)_{T, p, n_{j \neq i}}$
(z is a direction; e means $z_{e}=-1$)
$\frac{d \bar{\mu}_{e}}{d z}$ dictates directionality
... multiply by $\sigma_{e}=\frac{F^{2} D_{e} c_{e}}{R T}$ to get relative rate ... multiply Flux $x_{z, e}$ by " $z_{e} F$ " to get $J_{z, e}$

Solar cell experts say colloquial phrases like "band bending for charge separation" and "selective contacts"... I'm not a fan

Band diagram

"Ardo" diagram A hybrid internal energy / free energy diagram shows several useful things at once, but (possibly usefully) glosses over details of other transport processes... let's see which ones...

Today’s Critical Guiding Question

What thermodynamic term indicates whether a processes will net occur, or not, for a chemical reaction, and a single species... and uniquely for today, how does it allow us to quantitatively predict kinetic information?

Review of Physical Chemistry

- Photochemical applications
- Förster cube, Square schemes
- Thermodynamics versus Kinetics
- Schrödinger equation, Internal energy
- Free energy, (Electro)Chemical potential, Equilibrium
- Solid-state physics terminology
- Continuity of mass
- Mass action, Microscopic reversibility
- Mass transfer, Transport, Steady state

