Lecture \#5 of 12

Prof. Shane Ardo
Department of Chemistry
University of California Irvine

Thermal (Dark) Reactions

Prof. Shane Ardo
Department of Chemistry
University of California Irvine

Marcus-Hush Theory

$D+A \rightleftarrows D^{+}+A^{-}$
B

Marcus-Hush (1950s-1960s)
theoretical (semiclassical) rate constant equation
... but how is this a firstorder reaction $\left(s^{-1}\right)$?... more on this later...

Eyring-Polanyi-Evans (1930s)

$$
A \rightleftarrows X^{\neq} \rightleftarrows B
$$

theoretical rate constant equation (from transition-state theory / activated complex theory) $\boldsymbol{k}_{\boldsymbol{f}}=\kappa \nu K^{\neq}=\frac{\kappa k_{\mathrm{B}} T}{h} K^{\neq} \ldots$ with transmission coefficient, κ, and vibrational frequency, $\nu\left(\mathrm{s}^{-1}\right)$ \ldots and $R=N_{A} k_{\mathrm{B}} \ldots$ and $\frac{\kappa k_{\mathrm{B}} T}{h}$ has units of s^{-1}
$\boldsymbol{k}_{\boldsymbol{f}}=\frac{\kappa k_{\mathrm{B}} T}{h} \exp \left(-\frac{\Delta G^{\neq}}{R T}\right)=\frac{\kappa k_{\mathrm{B}} T}{h} \exp \left(\frac{\Delta S^{\neq}}{R}\right) \exp \left(-\frac{\Delta H^{\neq}}{R T}\right) \ldots$ and so A contains ΔS^{\neq}
... what is the largest predicted pre-exponential factor at $25^{\circ} \mathrm{C}$? $(161 \mathrm{fs})^{-1}=\left(1.61 \times 10^{-13} \mathbf{s}\right)^{-1}$

Outer + Inner Reorganization Energies

(REVIEW) 107

Marcus-Hush (1950s-1960s)

theoretical (semiclassical) rate constant equation
This theory came about by answering the following question: For an electron-transfer event, how does one satisfy the Franck-Condon principle and the conservation of energy?

- Franck-Condon principle: Nuclei are fixed during electron-transfer between orbitals... Born-Oppenheimer approximation is relevant

Electron Transfer in Solution

$$
\lambda_{\mathrm{AB}}=\lambda_{\mathrm{in}}+\lambda_{\mathrm{out}}
$$

$\lambda_{i}=\sum_{l} \lambda_{i, l}=\frac{1}{2} \sum_{l} f_{l}\left(\Delta q_{e, l}\right)^{2}$
... this is for a harmonic oscillator
... with force constants, $f_{l \ldots}$
... and yes, it's another parabola!

Reactants

NUCLEAR CONFIGURATION

Observation of Inverted Region Behavior

Marcus-Hush (1950s-1960s)

theoretical (semiclassical) rate constant equation
The Inverted Region Effect
Foreshadowing...

REACTION COORDINATE q

Closs-Miller (1984)
observation of inverted region

Today’s Critical Guiding Question

What thermodynamic term indicates whether a processes will net occur, or not, for a chemical reaction, and a single species... and uniquely for today, how does it allow us to quantitatively predict kinetic information... for real this time: Part 2?

Thermal (Dark) Reactions

- Activation energy, Eyring-Polanyi-Evans equation
- Marcus-Hush (electron-transfer) theory
- Transition-state character, Reorganization energies (outer and inner), Linear free energy relationships
- Molecular orbital theory, Huang-Rhys factor
- Quantum mechanical tunneling, Superexchange
- Inner versus Outer sphere reactions, Robin-Day classification
- Self-exchange reactions, Marcus cross relations
- Charge transfer across electrified interfaces, Butler-Volmer equation, Rate-determining step, Fermi's golden rule, Marcus-Gerischer theory

Linear Free Energy Relationships (LFERs)

Marcus-Hush (1950s-1960s)
theoretical (semiclassical) rate constant equation

Brønsted-Pedersen (1924)
empirical LFER for proton transfer

$$
\ln k_{\mathrm{PT}}=-\boldsymbol{\beta} \mathrm{p} K_{\mathrm{a}}+C
$$

linear free-energy relation Online use... - 〈>

Also contains definition of: linear Gibbs energy relation

A linear correlation between the logarithm of a rate constant or equilibrium constant for one series of reactions and the logarithm of the rate constant or equilibrium constant for a related series of reactions. Typical examples of such relations (also known as linear Gibbs energy relations) are the Bronsted relation, and the Hammett equation.
The name arises because the logarithm of an equilibrium constant (at constant temperature and pressure) is proportional to a standard free energy. (Gibbs energy) change, and the logarithm of a rate constant is a linear function of the free energy. (Gibbs energy) of activation.
It has been suggested that this name should be replaced by linear Gibbs energy relation, but at present there is little sign of acceptance of this change. The area of physical organic
Cite as: IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Online version (2019-) created by S. J. Chalk. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook.

Oiv.ill PDF Text JSON Histony Feedback
Last revised: February 24, 2014
trend looks linear over a small enough $\Delta G_{\mathrm{AB}}{ }^{\circ}$ range

J. Albery, Ann. Rev. Phys. Chem., 1980, 31, 227-263
R. A. Marcus, Farad. Discuss. Chem. Soc., 1982, 74, 7-15

Marcus Kinetic Behavior

Table 13 Applications of the Marcus relation

Electron transfers	Electrochemical Tafel Law Electrode kinetics at semiconductors
	Homogeneous Correlation with electrochemical Cross reactions obey Marcus relation (Eq. 4)
Proton transfers	Marcus relation reduces to Bronsted Law O, N bases and Explains curved Bronsted plots some transfers to \mathbf{C} Concerted reactions Describes enolization of acetone
Methyl transfers	Cross reactions obey Marcus relation Swain-Scott n separated into n^{\ddagger} and n^{θ} αD isotope effects measure C^{+}character
Nucleophilic additions	Provides alternative explanation to Ritchie relation Values of \bar{G} found to be constant for similar species

Schrödinger Equation

(REVIEW) 113

But you still didn't tell us why we need to recall this equation

$$
\widehat{H} \psi_{n}(x)=(\widehat{T}+\widehat{V}) \psi_{n}(x)=\mathrm{E}_{n} \psi(x)
$$

... we need to fill internal energies, E_{n}, with particles... okay.

$$
\frac{\partial^{2} \phi(x)}{\partial x^{2}}=-\frac{\rho}{\varepsilon} \quad \mathbf{E}=-\frac{\partial \phi(x)}{\partial x}
$$

... and that under most chemical conditions, potential energy, $\widehat{V}(x)$, is electrostatic, $\phi(x)$
... which is actually not so limiting because there are only 4-ish forces of Nature
... and while we're at it, let's (re)learn overlap integral $\left(S_{n m}\right)$, expectation value ($\left.\left\langle p_{n}\right\rangle\right)$, bra-ket notation $\left(\left\langle\psi_{n} \mid \psi_{m}\right\rangle\right)$, and exponential tunneling probability...

Probability $\operatorname{Density}(x)=\left|\psi_{n}(x)\right|^{2}=\psi_{n}^{*}(x) \psi_{n}(x)$

$$
\ldots \text { with } \psi_{n}^{*}(x) \text { (complex conjugate) }
$$

Overlap integral, $S_{n m}=\int_{-\infty}^{\infty} \psi_{n}^{*}(x) \psi_{m}(x) d x=\left\langle\psi_{n} \mid \psi_{m}\right\rangle$

$$
\text { ... with }\left\langle\Psi_{n}\right| \text { ("bra") and }\left|\Psi_{m}\right\rangle \text { ("ket") }
$$

Mean Energy, $\left\langle\mathrm{E}_{n}\right\rangle=\frac{\int_{-\infty}^{\infty} \Psi_{n}^{*}(x, t) \widehat{H} \Psi_{n}(x, t) d x}{\int_{-\infty}^{\infty} \Psi_{n}^{*}(x, t) \Psi_{n}(x, t) d x}=\left\langle\Psi_{n}\right| \widehat{H}\left|\Psi_{n}\right\rangle=\langle\widehat{H}\rangle$

Molecular Orbital Theory

Marcus-Hush (1950s-1960s)

theoretical (semiclassical) rate constant equation

$$
k_{\mathrm{ET}}=\frac{2 \pi}{\hbar}\left|H_{\mathrm{DA}}\right|^{2} \frac{1}{\sqrt{4 \pi \lambda_{\mathrm{AB}} k T}} \exp \left(-\frac{\Delta G_{\mathrm{AB}}^{\neq}}{k T}\right)
$$

quantum adiabatic
classical nuclear free-
electronic coupling energy dependence

Molecular Orbital Theory

linear combination of atomic orbitals
(50) The splitting at the intersection is only equal to $2 H_{\mathrm{AB}}$ when the overlap of the electronic wave functions can be neglected. More generally it is equal to $2\left(H_{\mathrm{AB}}-S_{\mathrm{AB}} H_{\mathrm{AA}}\right) /\left(1-S_{\mathrm{AB}}{ }^{2}\right)$ where $S_{\mathrm{AB}}=\left\langle\psi_{\mathrm{A}} \mid \psi_{\mathrm{B}}\right\rangle$.
... which equals $\left(E_{+}-E_{-}\right)$from MO Theory
... remember the simplicity of $\mathrm{H}_{2}{ }^{+}$.. which resembles $\lambda_{\text {out }}$ math $\hat{H}\left(r, R_{a b}\right)=-\frac{\hbar^{2}}{2 m} \nabla_{a}^{2}-\frac{\hbar^{2}}{2 m} \nabla_{b}^{2}-\frac{\hbar^{2}}{2 m} \nabla^{2}-\frac{e^{2}}{4 \pi \epsilon_{0} r_{a}}-\frac{e^{2}}{4 \pi \epsilon_{0} r_{b}}+\frac{e^{2}}{4 \pi \epsilon_{0} R_{a b}}$
 $E_{ \pm}(R)=\frac{1}{1 \pm S(R)}\left(H_{A A}(R) \pm H_{A B}(R)\right)$
Atomic Molecular
orbital orbitals orbital
orbitals

Quantum Mechanical Tunneling / Superexchange

Marcus-Hush (1950s-1960s)
theoretical (semiclassical) rate constant equation

$$
k_{\mathrm{ET}}=\frac{2 \pi}{\hbar}\left|H_{\mathrm{DA}}\right|^{2} \frac{1}{\sqrt{4 \pi \lambda_{\mathrm{AB}} k T}} \exp \left(-\frac{\Delta G_{\mathrm{AB}}^{\neq}}{k T}\right)
$$

Superexchange (not hopping!)
long-distance through-bond transport

$$
\left|\widehat{H}_{\mathrm{DA}}\right|=\left|\widehat{H}_{\mathrm{DA}}^{\mathrm{o}}\right| \exp \left(-\frac{\beta_{\text {super }}(N-1)}{2}\right)
$$

... where N is the number of bonds
H. B. Gray \& J. R. Winkler, PNAS, 2005, 102, 3534-3539
$\left\lvert\, \begin{aligned} & \text { H. . Gray \& J. R. Winker, } \widehat{H}_{\mathrm{DA}} \mid \\ & \left.\left|\left\langle\Psi_{\mathrm{D}}\right| \widehat{H}_{\mathrm{DA}}\right| \Psi_{\mathrm{A}}\right\rangle\left|=\left|\widehat{H}_{\mathrm{DA}}^{0}\right| \exp \left(-\frac{\beta_{\text {tunnel }}\left(z_{\mathrm{DA}}-z_{\mathrm{DA}}{ }^{\circ}\right)}{2}\right)\right.\end{aligned}\right.$
... where $\beta_{\text {tunnel }}$ has units of \AA^{-1}

Inner versus Outer Sphere Reactions

Marcus-Hush (1950s-1960s)
theoretical (semiclassical) rate constant equation

$$
k_{\mathrm{ET}}=\frac{2 \pi}{\hbar}\left|H_{\mathrm{DA}}\right|^{2} \frac{1}{\sqrt{4 \pi \lambda_{\mathrm{AB}} k T}} \exp \left(-\frac{\Delta G_{\mathrm{AB}}^{\neq}}{k T}\right)
$$

Taube (1950s-1970s)
inner sphere electron transfer
Robin-Day MV classification... label each below! Class I: nonadiabatic ($H_{\mathrm{DA}} \approx 0$)
Class II: adiabatic, localized ($0<2 \mathrm{H}_{\mathrm{DA}}<\lambda_{\mathrm{AB}}$) Class III: adiabatic, delocalized ($2 \mathrm{H}_{\mathrm{DA}}>\lambda_{\mathrm{AB}}$) ... so what is $\mathbf{2} \boldsymbol{H}_{\mathrm{DA}}$ for Class III [C-T] $]^{5+}$?

C. Creutz \& H. Taube, J. Am. Chem. Soc., 1969, 91, 3988-3989 B. S. Brunschwig, C. Creutz \& N. Sutin, Chem. Soc. Rev., 2002, 31, 168-184

Huang-Rhys Factor

Marcus-Hush (1950s-1960s)

theoretical (semiclassical) rate constant equation

$$
\begin{aligned}
\boldsymbol{k}_{\mathrm{ET}} & =\frac{2 \pi}{\hbar}\left|H_{\mathrm{DA}}\right|^{2} \frac{1}{\sqrt{4 \pi \lambda_{\mathrm{AB}} k T}} \exp \left(-\frac{\Delta G_{\mathrm{AB}}^{\neq}}{\boldsymbol{k T}}\right) \\
& =\nu_{\mathrm{n}}(r) \kappa_{\mathrm{el}}(r)_{\kappa_{\mathrm{n}}}(r) \\
& =\frac{2 \pi}{\hbar}\left\langle\psi_{\mathrm{el}}^{\prime}\right| \hat{H}\left|\psi_{\mathrm{el}}\right\rangle^{2}\left\langle\psi_{\text {vib }}^{\prime} \mid \psi_{\text {vib }}\right\rangle^{2} \delta(E-E) \\
& \ldots . \text { separable due to the Born-Oppenheimer approximation }
\end{aligned}
$$

Fermi's Golden Rule

time-dependent perturbation theory

With one coupled medium- or high-frequency mode (or averaged mode), only the $v=0$ vibrational level is appreciably populated at room temperature ($\hbar \omega \gg$ $k_{\mathrm{B}} T$, and 8,43,112,115,131

$$
\begin{array}{r}
k_{\mathrm{ET}}=\frac{2 \pi}{\hbar} \frac{H_{\mathrm{DA}}{ }^{2}}{\left(4 \pi \lambda_{0} R T\right)^{1 / 2}} \sum_{V} \exp (-S) \frac{S^{V}}{V^{\prime}!} \exp \left[-\left[\left(\Delta G^{\circ}+\right.\right.\right. \\
\left.\left.\left.V \hbar \omega+\lambda_{0}\right)^{2} / 4 \lambda_{0} R T\right]\right]
\end{array}
$$

In this limit the coupled vibration does not contribute to the temperature dependence since the only contributing reaction channels originate from $v=0$.

If $\hbar \omega_{j} \gg k_{\mathrm{B}} T$, only $v_{j}=0$ is appreciably populated and

$$
\begin{equation*}
\left\langle\chi_{V_{j}^{\prime}} \mid \chi_{V_{j}=0}\right\rangle^{2}=\exp \left(-S_{j}\right) \frac{S_{j}^{V_{j}^{\prime}}}{v_{j}^{\prime}!} \tag{22}
\end{equation*}
$$

S_{j} is the electron-vibrational coupling constant, or Huang-Rhys factor: ${ }^{99,105}$

$$
\begin{equation*}
S_{j}=\frac{1}{2}\left(\frac{M_{j} \omega_{j}}{\hbar}\right)\left(\Delta Q_{\mathrm{e}, j}\right)^{2} \tag{19}
\end{equation*}
$$

M_{j} is the reduced mass. The physical significance of the vibrational overlap integrals is that they give the extent to which the final and initial states coincide along the normal coordinate.
... we'll stop
here, but it can
get even messier, of course...

Today’s Critical Guiding Question

What thermodynamic term indicates whether a processes will net occur, or not, for a chemical reaction, and a single species... and uniquely for today, how does it allow us to quantitatively predict kinetic information... for real this time: Part 2?

