\bigcirc

UCI CHEM267 – Photochemistry, Spring 2023

Lecture #7 of 12

Prof. Shane Ardo Department of Chemistry University of California Irvine

Linear Free Energy Relationships (LFERs)

(REVIEW) 154

 $n e^{-,M} + O \rightleftharpoons R^{n-}$

Butler–Volmer equation

$$\begin{split} j_E &= nF\left(k'_{b,E}c_{\mathrm{R},x_0} - k'_{f,E}c_{\mathrm{O},x_0}\right) & \dots \text{ for this example, let's assume that } n = 1 \dots \\ j_E &= Fk^0 \left\{ c_{\mathrm{R},x_0} \exp\left(\frac{(1-\beta)F(E-E^{o\prime})}{RT}\right) - c_{\mathrm{O},x_0} \exp\left(\frac{-\beta F(E-E^{o\prime})}{RT}\right) \right\} & \begin{array}{c} \text{Current-Potential Characteristic} \\ j_E &= j_o \left\{ c_{\mathrm{R},x_0} \exp\left(\frac{(1-\beta)F\eta}{RT}\right) - \frac{c_{\mathrm{O},x_0}}{c_o^*} \exp\left(\frac{-\beta F\eta}{RT}\right) \right\} & \eta = \left(E - E_{\mathrm{eq}}\right) = E_{\mathrm{app}} & \begin{array}{c} \text{Current-Overheids} \\ \mathrm{Overotential Equation} \\ \vdots \\ \varepsilon_n^* & \text{means bulk concentration... conversion is trivial using } E_{\mathrm{eq}} = E^{o\prime} - \frac{B^{\prime\prime}}{RT} \ln \frac{c_0^{\prime\prime}}{c_0^*} \\ j_E &= j_o \left\{ \exp\left(\frac{(1-\beta)F\eta}{RT}\right) - \exp\left(\frac{-\beta F\eta}{RT}\right) \right\} & \begin{array}{c} \text{Butter-} \\ \text{Summer} \\ \text{Equation} & \text{TS}_{\mathrm{can}}^{-1} = \left(\frac{d(\log |j_E|)}{d\eta}\right)_{\mathrm{cat}} = \frac{-\beta F}{2.303RT} \\ \vdots \\ \dots & \text{assuming a rapidly stirred solution} & \begin{array}{c} \text{Slopes} \\ \text{Slopes} \\ \text{TS}_{\mathrm{can}}^{-1} = \left(\frac{d(\log |j_E|)}{d\eta}\right)_{\mathrm{am}} = \frac{(1-\beta)F}{2.303RT} \\ \end{array} \right\}$$

Rate-Determining Step (RDS)
$D + A \rightleftharpoons D^{+} + A^{-} \qquad \frac{-\gamma c_{0}}{\partial x^{2}} = -\frac{r}{\varepsilon} \qquad E = -\frac{q - c_{0}}{\partial x}$ But wait is this the elementary reaction step for electron transfer between a (D)onor and an (A)cceptor in solution? Nopel
$ \underbrace{ \begin{array}{c} \underline{ Ground-state \ electron \ transfer} \\ D+A \Leftrightarrow \underbrace{(D,A)}_{R_0} \Leftrightarrow \underbrace{(D,A)}_{R^4} \stackrel{\#}{\Leftrightarrow} \underbrace{(D^+,A^-)}_{P^4} \Leftrightarrow \underbrace{(D^+,A^-)}_{P_0} \Leftrightarrow D^+ + A^- \end{array} } $
Excited-state electron transfer in pre-equilibrium Ru(bipy)_{3}^{1me} + Q = \frac{410}{412} Ru(bipy)_{3}^{1me} + Q = \frac{410}

159

... seemingly totally unrelated... how does one determine the observed resistance of 3 resistors in parallel, or 3 capacitors in series? ... it's approximately equal to the smaller one... okay... but mathematically, add their reciprocals... and reciprocate

$$D + A \stackrel{\textcircled{0}}{\rightleftharpoons} (D, A) \stackrel{\textcircled{0}}{\rightleftharpoons} (D^+, A^-) \stackrel{\textcircled{0}}{\rightleftharpoons} D^+ + A^-$$

RDS: Pre-Equilibrium Approximation

... so how does one determine the **observed** rate constant for 3 reactions **in series**? ... it's the same general idea... $\frac{1}{k_{fobs}} = \frac{1}{k_{if}} + \frac{1}{k'_{if}} + \frac{1}{k'_{if}}$... where $\frac{\partial |D|}{\partial t} = \frac{\partial |A|}{\partial t} = -k_{f,obs}[D][A]$... except that <u>Step 2</u> is preceded by Step 1... and <u>Step 3</u> is preceded by Steps 1 and 2 ... and only one of those Steps will dominate the observed rate when it is the slowest step ... so the (pre)coding steps must be much faster... thus assume they are in equilibrium... $\frac{1}{k_{f,obs}} = \frac{1}{k_{1f}} + \frac{1}{k_1k_{2f}} + \frac{1}{k_1k_2k_{3f}} = \frac{1}{k_{1f}} + \frac{k_{1b}}{k_1k_2f} + \frac{k_{1b}k_{2b}}{k_1fk_2fk_{3f}}$

... and for completion, what if 3 (same-order) reactions occur simultaneously, i.e. in parallel? ... it's as easy as it seems... $\mathbf{k}_{f,obs} = k_{1f} + k_{2f} + k_{3f} = \frac{1}{\tau_{1f}} + \frac{1}{\tau_{2f}} + \frac{1}{\tau_{3f}} = \frac{1}{\tau_{f,obs}}$

RDS: Steady-State Approximation

160

... but what if we want to determine $\frac{\partial [D^+]}{\partial t} = \frac{\partial [A^-]}{\partial t}$... and some preceding steps are fast? ... when all are fast, except Step 1, won't $k_{f,obs} = k_{1f}$ then?... not always...

$D + A \stackrel{\textcircled{0}}{\rightleftharpoons} (D, A) \stackrel{\textcircled{0}}{\rightleftharpoons} (D^+, A^-) \stackrel{\textcircled{0}}{\rightleftharpoons} D^+ + A^-$

Assume that the middle steps come and go quickly... so each has a small steady-state conc... $\frac{\partial [(D,A)]}{\partial t} = 0 = -k_{2f}[(D,A)] + k_{1f}[D][A]... and thus [(D,A)] = \frac{k_{1f}[D][A]}{k_{2f}}$ $\frac{\partial [(D^+, A^-)]}{\partial t} = \mathbf{0} = -k_{3f} [(D^+, A^-)] + k_{2f} [(D, A)] \dots \text{ and thus } [(D^+, A^-)] = \frac{k_{2f} [(D, A)]}{k_{3f}}$ $-k_{2f}[(D, A)] ... and thus [(D^+, A^-)] = \frac{k_{2f}k_{2f}}{k_{3f}}$... which means that [(D⁺, A⁻)] = $\frac{k_{1f}k_{2f}[D][A]}{k_{2f}k_{3f}} = \frac{k_{1f}[D][A]}{k_{3f}}$

... since $\frac{\partial [D^+]}{\partial t} = \frac{\partial [A^-]}{\partial t} = k_{3f} [(D^+, A^-)]$... this is just equal to $k_{1f} [D][A]$... and $k_{f,obs} = k_{1f}$... which is what the pre-equilibrium approximation would have predicted too, so... consistent!

5. Trautil, J. Electronard Chem. Interfacial Electrodem, 1972, 39, 163-144 162 Charge Transfer across Electrified Interfaces							
J. O'M. Bockris ¹ and Z. Nagy ² Electrochemistry laboratory University of Panegulynnin	$\frac{\beta}{\text{Symmetry Factor}} \text{ and } \frac{\text{Transform}}{\text{Transform}}$	ansfer Coefficient					
Philodelphia, 19104 <u>Case 1</u> : V = pre-equilibrium; H = RDS; $I_{i-2} = 2i \int \frac{C_{H_2 Z_0}}{C_{H_2 Z_0}} \exp \left(\frac{(1-\beta)F\eta}{2}\right) = \frac{C_{M-1}}{C_{M-1}}$	A source of confusion in e $E = E_{eq}$; rapidly stir solution $\left \frac{E_{eq}}{E_{eq}} - \frac{E_{eq}}{E_{eq}} \right $						
$j_E = 2j_o \left(\frac{c_{H_2}}{c_{H_2}} \exp\left(\frac{(1-\beta)F\eta}{RT}\right) - \theta_{M-H} \exp\left(\frac{(1-\beta)F\eta}{RT}\right) - \theta_{M} \exp\left(\frac{(1-\beta)F\eta}{RT}\right) - \theta_{M} \exp\left(\frac$	$ \frac{\left(-\beta F\eta}{RT}\right) $	Volmer Hevrovsky mechanism					
$j_E = 2j_o \left\{ \exp\left(\frac{(1-\beta)F\eta}{RT}\right) - \frac{c_{H^+x_0}}{c_{H^+}^*} \exp\right.$ $j_E = 2j_o \left\{ \exp\left(\frac{(1-\beta)F\eta}{RT}\right) - \frac{c_{H^+x_0}}{c_{H^+}^*} \exp\left(\frac{(1-\beta)F\eta}{RT}\right) \right\}$	$\frac{\left(\frac{-F\eta}{RT}\right)\exp\left(\frac{-\beta F\eta}{RT}\right)}{\frac{-\beta F\eta}{RT}-\exp\left(\frac{-(1+\beta)F\eta}{RT}\right)}$	V (E): H ⁺ + e ⁻ ≓ M ⁻ H H (E): M ⁻ H + e ⁻ + H ⁺ ≓ H ₂ + M					
	$\alpha_{\rm cath} + \alpha_{\rm an}$	$= (1 + \beta) + (1 - \beta) = 2!$					

 \bigcirc

UCI CHEM267 – Photochemistry, Spring 2023

164

Photophysical Processes

Prof. Shane Ardo Department of Chemistry University of California Irvine

Today's Critical Guiding Question

165

What continuity/conservation laws are most important for photophysical processes like absorption and emission of photons?

Photophysical Processes

(UPDATED) 166

• Blackbody radiation, Photon properties, Light–Matter interactions, Conservation laws, Einstein coefficients

- Jablonski diagram, Spin multiplicity, Internal conversion, Intersystem crossing, Thexi state, Kasha–Vavilov rule, Stokes shift, PL
- Born–Oppenheimer approximation, Franck–Condon principle, Transition dipole moment operator, Franck–Condon factors, Beer–Lambert law, Absorption coefficient, Oscillator strength, Absorptance
- Luminescence processes, Selection rules, Charge-transfer transitions, Spin—Orbit coupling, Heavy-atom effect, *E-k* diagrams, Jortner energy gap law, Conical intersections, Energy transfer, Exciplex/Excimer
- Photoluminescence spectrometer, Emission/Excitation spectra, Inner filter effects, Anisotropy, Excited-state lifetime, Emission quantum yield

Schrödinger Equation

(REVIEW) 167

Elegant master equation that allows one to determine internal energies, E_n , of a system $\widehat{H}\psi_n(x)=\mathbf{E}_n\psi_n(x)$... but this is not good enough for photochemists where **time-varying** oscillating

 $E = hv = \hbar\omega \text{ (Planck)}$ $E = mc^2 = pc \text{ (Einstein)}$ $p = \frac{hv}{c} = \frac{h}{\lambda} = h\overline{v} = \hbar k \text{ (de Broglie)}$ electromagnetic fields often interact with matter... $\widehat{H}\Psi_n(x,t) = i\hbar\frac{\partial}{\partial t}\Psi_n(x,t)$

... so, how does one solve either of these Schrödinger equations?... We need to know \hat{H} ! $\hat{H} = \hat{T} + \hat{V}$

... um... well that didn't really help us at all... anyway, so instead, we need to know \hat{T} and \hat{V} ? $\hat{T}(\mathbf{x}) = \mathbf{K}\mathbf{E} = \frac{1}{2}m\vartheta^2 = \frac{p^2}{2m}, \text{ with } (\hat{p})\text{momentum} = (m)\text{ass } \mathbf{x}(\vartheta)\text{elocity} = -i\hbar\frac{\vartheta}{\vartheta x}, \frac{\vartheta \otimes \mathbf{w}}{\vartheta x}, \frac{\vartheta \otimes \mathbf{w}}$

 $\hat{V}(x) = \frac{1}{2}k_f x^2 = \frac{1}{2}m\omega^2 x^2$... for harmonic oscillator, with k_f (force const), ω (angular freq)... $\hat{V}(r) = -\frac{q^2}{4\pi\varepsilon_0 r}$... for Hydrogen atom, with $F = qN_A$ (Faraday const), ε_0 (vacuum permittivity)

	(REVIEW) 168
Schrödinger Equation	Poisson's Equation (from Gauss's law)
But you still didn't tell us why we need to recall this equation $\hat{H}\psi_n(x) = (\hat{T} + \hat{V})\psi_n(x) = E_n\psi(x)$	$\frac{\partial^2 \phi(x)}{\partial x^2} = -\frac{\rho}{\varepsilon} \qquad \mathbf{E} = -\frac{\partial \phi(x)}{\partial x}$
we need to fill internal energies, $E_{\eta},$ with particles okay. for	r a point charge $\phi(r) = \frac{1}{4\pi\varepsilon r}$ look familiar?
and that under most chemical conditions, potential energy, $\hat{V}(x)$ which is actually not so limiting because there are only 4-ish for and while we're at it, let's (re)learn overlap integral (S_{nm}), expendation ($\psi_n \psi_m \rangle$), and exponential tunneling probability), is electrostatic, $\phi(x)$ ces of Nature ectation value ($\langle p_n \rangle$), bra-ket
Probability Density(x) = $ \psi_n(x) ^2 = \psi_n^*(x)\psi_n(x)$ with $\psi_n^*(x)$ (complex conjugate)	~~*****
Overlap integral, $S_{nm} = \int_{-\infty}^{\infty} \psi_n^*(x) \psi_m(x) dx = \langle \psi_n \psi_m \rangle$ with $\langle \Psi_n $ ("bra") and $ \Psi_m \rangle$ ("ket")	
Moon Energy $\langle \mathbf{F} \rangle = \int_{-\infty}^{\infty} \Psi_n^*(x,t) \hat{H} \Psi_n(x,t) dx = \langle \mathbf{u} \mid \hat{\mathbf{u}} \mid \mathbf{u} \rangle = \langle \hat{\mathbf{u}} \rangle$	

 $\mathsf{n} \; \mathsf{Energy}, \langle \mathsf{E}_n \rangle = \frac{I_{-\underline{w}} \vee_n (x,t) \, dx \, \pi \, \pi \, (x,t) \, dx}{\int_{-\underline{w}}^{\underline{w}} \psi_n^*(x,t) \, \psi_n(x,t) \, dx} = \langle \Psi_n | \hat{H} | \Psi_n \rangle = \langle H \rangle$

Photon Properties & Conservation Laws

Where does light come from? Particle Type: Boson Mass: 0 Charge: 0 Energy: $E = hv = \hbar\omega$ Linear Velocity: $\frac{c}{n} = \left(\frac{\lambda}{n}\right) v = \lambda' v$ Linear Momentum: $p = \frac{h}{\lambda'} = \frac{nh\nu}{c} \approx 0$ Linear Polarization: \vec{E} and \vec{B}

Wait... is a light a wave or a particle? ... I mean, is matter a wave or particle? ... I mean, doesn't everything exhibit wave-like and particle-like properties? With what matter does light interact? Fermion Angular Momentum (Orbital, Spin) Magnitude: $\hbar \sqrt{J(J+1)}$ z-Direction: $m_J\hbar$, $m_J = [-J, J]$ in steps of 1 Multiplicity/Degeneracy, $g_J: 2J + 1$

Today's Critical Guiding Question

171

170

What continuity/conservation laws are most important for photophysical processes like absorption and emission of photons?

> **DISCUSSION SESSION** TOPICS

_			
-			
-			

8

Marcus–Gerischer Theory

176

(REVIEW) 177

Marcus–Gerischer Theory

C. E. D. Chidsey, Science, 1991, 251, 919-922

9

Marcus–Gerischer Theory

 $D_O(\lambda, E)$

2

(2) &T

ģ

• It is easy to sweep/vary the driving force, ΔG_{AB} by simply changing the electrochemical potential of electrons (e⁻) in the <u>(Mletal</u> working electrode, $\bar{\mu}_{e}^{\rm M}$, through variations in $E_{\rm app}$

• But evidence of the inverted region is a little challenging to clearly observe

... what if Chidsey had plotted the derivative of his data on the right?

... what do you expect that would have looked like? ... a nice Marcus parabola!

... I wish he had done that!

... anyway... why is λ so small in water? ... think about the metal!

(REVIEW/UPDATED) 179

C. E. D. Chidsey, Science, 1991, 251, 919-922

