Lecture \#7 of 12

Prof. Shane Ardo

Department of Chemistry
University of California Irvine

Linear Free Energy Relationships (LFERs)

Marcus-Hush (1950s-1960s)
theoretical (semiclassical) rate constant equation
Brønsted-Pedersen (1924)
empirical LFER for proton transfer

Butler-Volmer equation
(REVIEW) 154

$$
n \mathrm{e}^{-, \mathrm{M}}+\mathrm{O} \rightleftarrows \mathrm{R}^{n-}
$$

$j_{E}=n F\left(\boldsymbol{k}_{b, E}^{\prime} c_{R, z_{0}}-\boldsymbol{k}_{f, E}^{\prime} c_{0, z_{0}}\right) \quad \ldots$ for this example, let's assume that $n=1 \ldots$
$j_{E}=F k^{0}\left\{c_{\mathrm{R}, z_{\mathrm{o}}} \exp \left(\frac{(1-\beta) F\left(E-E^{\mathrm{o}^{\prime}}\right)}{R T}\right)-c_{0, z_{\mathrm{o}}} \exp \left(\frac{-\beta F\left(E-E^{\alpha^{\prime}}\right)}{R T}\right)\right\} \quad \begin{gathered}\text { Current-Potential } \\ \text { Characteristic }\end{gathered}$

... c^{*} means bulk concentration... conversion is trivial using $E_{\text {eq }}=E^{0 \prime}-\frac{R T}{n F} \ln \frac{c_{\mathrm{R}}^{c^{*}}}{c_{\mathrm{O}}^{*}}$

\qquad

Butler-Volmer equation
.. let's examine effects of $\boldsymbol{j}_{0}\left(\right.$ or $\left.\boldsymbol{k}^{0}\right)$...

Butler-Volmer equation

. let's examine effects of $\boldsymbol{\beta}$ (or Tafel slope)..

\ldots recall that... $\eta=\left(E-E_{\text {eq }}\right)=E_{\text {app }}=\frac{\Delta G^{0}}{-n F}$

Bard \& Faulkner, Chapter 3, Figure 3.3.4, Page 97 Reaction coordinate

Charge Transfer across Electrified Interfaces

Electrochemistry Loboratory
Univerity of Pennsilvania Philodelphio, 19104

Symmetry Factor and Iranster Coefficient

A source of confusion in electrode kinetics
Symmetry factor (β) : change in the activation free energy of the cathodic elementary reaction step, expressed as a fraction of $E_{\text {app }}$ Transfer coefficient ($\boldsymbol{\alpha}_{\boldsymbol{p}}$): change in the (cath)odic/(an)odic reaction rate expressed as a change in the activation free energy as a fraction of $E_{\text {app }}$

Do the two transfer coefficients always have to sum to one?

$$
\begin{gathered}
\mathrm{TS}_{\text {cath }}{ }^{-1}=\left(\frac{d\left(\log \left|j_{E}\right|\right)}{d|\boldsymbol{\eta}|}\right)_{\text {cath }}=\frac{-\alpha_{\mathrm{cath} F}^{2.303 R T}}{\mathrm{TS}_{\mathrm{an}}{ }^{-1}=\left(\frac{d\left(\log j_{E}\right)}{d \boldsymbol{\eta}}\right)_{\text {an }}=\frac{\alpha_{\mathrm{an}} F}{2.303 R T}} \\
\text { J. O'M. Bockris \&z. Nagy, I. Chem. Educ., 1973, 50, 839-843 }
\end{gathered}
$$

$\begin{array}{ll}\text { But wait... is this the elementary reaction step for electron transfer between } & \phi(r)=\frac{q}{4 \pi \varepsilon r} \\ \text { a (D)onor and an (A)cceptor in solution? Nope! }\end{array}$

RDS: Pre-Equilibrium Approximation

... seemingly totally unrelated... how does one determine the observed resistance of 3 resistors in parallel, or 3 capacitors in series? ... it's approximately equal to the smaller one... okay... but mathematically, add their reciprocals... and reciprocate

$$
D+A \stackrel{\ominus}{\rightleftarrows}(D, A) \stackrel{\ominus}{\rightleftarrows}\left(D^{+}, A^{-}\right) \stackrel{\ominus}{\rightleftarrows} D^{+}+A^{-}
$$

... so how does one determine the observed rate constant for 3 reactions in series? \ldots. it's the same general idea... $\frac{1}{k_{f, \text { obs }}}=\frac{1}{k_{1 f}}+\frac{1}{k_{2 f}^{\prime}}+\frac{1}{k_{3 f}^{\prime} \ldots}$ where $\frac{\partial[\mathrm{D}]}{\partial t}=\frac{\partial[\mathrm{A}]}{\partial t}=-k_{f, \text { obs }}[\mathrm{D}][\mathrm{A}]$
... except that Step 2 is preceded by Step 1 ... and Step 3 is preceded by Steps 1 and 2 ... and only one of those Steps will dominate the observed rate when it is the slowest step ... so the (pre)ceding steps must be much faster... thus assume they are in equilibrium...

$$
\frac{1}{k_{f, \text { obs }}}=\frac{1}{k_{1 f}}+\frac{1}{k_{1} k_{2 f}}+\frac{1}{K_{1} K_{2} k_{3 f}}=\frac{1}{k_{1 f}}+\frac{k_{1 b}}{k_{1 f} k_{2 f}}+\frac{k_{1 b} k_{2 b}}{k_{1} k_{2 f} k_{3 f}}
$$

... and for completion, what if 3 (same-order) reactions occur simultaneously, i.e. in parallel? \ldots.. it's as easy as it seems... $\boldsymbol{k}_{f, \text { obs }}=k_{1 f}+k_{2 f}+k_{3 f}=\frac{1}{\tau_{1 f}}+\frac{1}{\tau_{2 f}}+\frac{1}{\tau_{3 f}}=\frac{1}{\tau_{f, \text { obs }}}$

RDS: Steady-State Approximation

... but what if we want to determine $\frac{\partial\left[\mathrm{D}^{+}\right]}{\partial t}=\frac{\partial\left[\mathrm{A}^{-}\right]}{\partial t} \ldots$ and some preceding steps are fast?
... when all are fast, except Step 1 , won't $\boldsymbol{k}_{\boldsymbol{f}, \text { obs }}=k_{1 f}$ then?... not always...

$$
D+A \stackrel{\oplus}{\rightleftarrows}(D, A) \stackrel{\ominus}{\rightleftarrows}\left(D^{+}, A^{-}\right) \stackrel{\ominus}{\rightleftarrows} D^{+}+A^{-}
$$

Assume that the middle steps come and go quickly... so each has a small steady-state conc.... $\frac{\partial[(\mathrm{D}, \mathrm{A})]}{\partial t}=0=-k_{2 f}[(\mathrm{D}, \mathrm{A})]+k_{1 f}[\mathrm{D}][\mathrm{A}] \ldots$ and thus $[(\mathrm{D}, \mathrm{A})]=\frac{k_{1 f}[\mathrm{D}][\mathrm{A}]}{k_{2 f}}$
$\frac{\partial\left[\left(\mathrm{D}^{+}, \mathrm{A}^{-}\right)\right]}{\partial t}=0=-k_{3 f}\left[\left(\mathrm{D}^{+}, \mathrm{A}^{-}\right)\right]+k_{2 f}[(\mathrm{D}, \mathrm{A})] \ldots$ and thus $\left[\left(\mathrm{D}^{+}, \mathrm{A}^{-}\right)\right]=\frac{k_{2 f}[(\mathrm{D}, \mathrm{A})]}{k_{3 f}}$

$$
\ldots \text { which means that }\left[\left(\mathrm{D}^{+}, \mathrm{A}^{-}\right)\right]=\frac{k_{1 f} k_{2 f}[\mathrm{D}][\mathrm{A}]}{k_{2 f} k_{3 f}}=\frac{k_{1 f}[\mathrm{D}][\mathrm{A}]}{k_{3 f}}
$$

\ldots since $\frac{\partial\left[\mathrm{D}^{+}\right]}{\partial t}=\frac{\partial\left[\mathrm{A}^{-}\right]}{\partial t}=k_{3 f}\left[\left(\mathrm{D}^{+}, \mathrm{A}^{-}\right)\right] \ldots$ this is just equal to $k_{1 f}[\mathrm{D}][\mathrm{A}] \ldots$ and $\boldsymbol{k}_{f, \text { obs }}=k_{1 f}$... which is what the pre-equilibrium approximation would have predicted too, so... consistent!

Charge Transfer across Electrified Interfaces

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
J. O'M. Bockris \&Z. Nagy, J. Chem. Educ, 1973, 50, 839-843 \qquad

Charge Transfer across Electrified Interfaces

Charge Transfer across Electrified Interfaces

Photophysical Processes

Prof. Shane Ardo
Department of Chemistry
University of California Irvine

Today's Critical Guiding Question

What continuity/conservation laws are most important for photophysical processes like absorption and emission of photons?

Photophysical Processes

(UPDATED) 166
\qquad
, Light-Matter interactions,

- Jablonski diagram, Spin multiplicity, Internal conversion, Intersystem crossing, Thexi state, Kasha-Vavilov rule, Stokes shift, PL
- Born-Oppenheimer approximation, Franck-Condon principle, Transition dipole moment operator, Franck-Condon factors, Beer-Lambert law, Absorption coefficient, Oscillator strength, Absorptance
- Luminescence processes, Selection rules, Charge-transfer transitions, Spin-Orbit coupling, Heavy-atom effect, $E-k$ diagrams, Jortner energy gap law, Conical intersections, Energy transfer, Exciplex/Excimer
filter effects, Anisotropy Excited-state lifetime, Emission quantum yield

Schrödinger Equation

(REVIEW) 167

Elegant master equation that allows one to determine internal energies, E_{n}, of a system

$$
\widehat{\boldsymbol{H}} \psi_{n}(x)=\mathbf{E}_{n} \psi_{n}(x)
$$

... but this is not good enough for photochemists where time-varying oscillating
electromagnetic fields often interact with matter... $\mathrm{E}=h \nu=\hbar \omega$ (Planck)

$$
\begin{array}{ll}
\widehat{H} \Psi_{n}(x, t)=i \hbar \frac{\partial}{\partial t} \Psi_{n}(x, t) & \mathrm{E}=m c^{2}=p c \text { (Einstein) } \\
p=\frac{h v}{c}=\frac{h}{2}=h \bar{v}=\hbar k \text { (de }
\end{array}
$$

$\begin{aligned} \widehat{H} \Psi_{n}(x, t) & =\boldsymbol{i} \hbar \frac{\partial}{\partial t} \Psi_{n}(x, t)\end{aligned} \quad p=\frac{h \nu}{c}=\frac{h}{\lambda}=h \bar{v}=\hbar k$ (de Broglie)
... so, how does one solve either of these Schrödinger equations?... We need to know \widehat{H} !

$$
\widehat{H}=\widehat{T}+\widehat{V}
$$

... um... well that didn't really help us at all... anyway, so instead, we need to know \widehat{T} and \hat{V} ?
$\hat{T}(x)=\mathrm{KE}=\frac{1}{2} m \hat{v}^{2}=\frac{\hat{p}^{2}}{2 m} \ldots$ with (\hat{p}) momentum $=(m)$ ass $\times(\hat{v})$ elocity $=-i \hbar \frac{\partial}{\partial x} \ldots$ Wow, right?
$\hat{V}(x)=\mathrm{PE}=0 \ldots$ for particle-in-a-box...
$\hat{V}(x)=\frac{1}{2} k_{f} x^{2}=\frac{1}{2} m \omega^{2} x^{2} \ldots$ for harmonic oscillator, with k_{f} (force const), ω (angular freq)...
$\hat{V}(r)=-\frac{q^{2}}{4 \pi \varepsilon_{0} r} \ldots$ for Hydrogen atom, with $F=q N_{\mathrm{A}}$ (Faraday const), ε_{o} (vacuum permittivity)

Schrödinger Equation

(REVIEW) 168

But you still didn't tell us why we need to recall this equation

$$
\widehat{H} \psi_{n}(x)=(\hat{T}+\hat{V}) \psi_{n}(x)=\mathrm{E}_{n} \psi(x)
$$

. we need to fill internal energies, E_{m}, with particles... okay. for a point charge. $\quad \boldsymbol{\pi} \phi(r)=\frac{q}{4 \pi \varepsilon r}$
... and that under most chemical conditions, potential energy, $\hat{V}(x)$, is electrostatic, $\phi(x)$
... which is actually not so limiting because there are only 4-ish forces of Nature
\ldots and while we're at it, let's (re)learn overlap integral ($S_{n m}$), expectation value ($\left\langle p_{n}\right\rangle$), bra-ket notation $\left(\left\langle\psi_{n} \mid \psi_{m}\right\rangle\right)$, and exponential tunneling probability...
Probability Density $(x)=\left|\psi_{n}(x)\right|^{2}=\psi_{n}^{*}(x) \psi_{n}(x)$
... with $\psi_{n}^{*}(x)$ (complex conjugate)
Overlap integral, $S_{n m}=\int_{-\infty}^{\infty} \psi_{n}^{*}(x) \psi_{m}(x) d x=\left\langle\psi_{n} \mid \psi_{m}\right\rangle$
.. with $\left\langle\Psi_{n}\right|$ ("bra") and $\left|\Psi_{m}\right\rangle$ ("ket")

$\frac{\int_{-\infty}^{\infty} \Psi_{n}^{*}(x, t) \hat{H} \Psi_{n}(x, t) d x}{\int_{-\infty}^{\infty} \Psi_{n}^{*}(x, t) \Psi_{n}(x, t) d x}=\underset{n}{\left\langle\Psi_{n}\right| \hat{H}\left|\Psi_{n}\right\rangle=\langle\hat{H}\rangle} \begin{gathered}\text { https } / / \text { en.wikipedia. }\end{gathered}$

Where does light come from?
Particle Type: Boson
Mass: 0
Charge: 0
Energy: $E=h \nu=\hbar \omega$
Linear Velocity: $\frac{c}{n}=\left(\frac{\lambda}{n}\right) v=\lambda^{\prime} v$
Linear Momentum: $p=\frac{h}{\lambda^{\prime}}=\frac{n h v}{c} \approx 0$
Linear Polarization: \vec{E} and \vec{B}
z-Direction Angular Momentum / Circular Polarization / Chirality / Helicity / Spin: $\pm \hbar= \pm \frac{h}{2 \pi}$
Wait... is a light a wave or a particle? Fermion Angular Momentum (Orbital, Spin)
... I mean, is matter a wave or particle?
... I mean, doesn't everything exhibit
Magnitude: $\hbar \sqrt{J(J+1)}$
z-Direction: $m_{J} \hbar, m_{J}=[-J, J]$ in steps of 1
Multiplicity/Degeneracy, $g_{J}: 2 J+1$

Today's Critical Guiding Question

What continuity/conservation laws are most important for photophysical processes like absorption and emission of photons?

Charge Transfer across Electrified Interfaces

Fermi's (Second) Golden Rule
(REVIEW) 174

Marcus-Gerischer Theory
(REVIEW) 175

Marcus-Gerischer Theory

Marcus-Gerischer Theory
(REVIEW) 177

Marcus-Gerischer Theory
(REVIEW) 178

Marcus-Gerischer Theory

(REVIEW/UPDATED) 179

