Lecture \#7 of 12

Prof. Shane Ardo
Department of Chemistry
University of California Irvine

Linear Free Energy Relationships (LFERs)
 (REVIEW) 153

Marcus-Hush (1950s-1960s)
theoretical (semiclassical) rate constant equation

Brønsted-Pedersen (1924)
empirical LFER for proton transfer

$$
\ln k_{\mathrm{PT}}=-\boldsymbol{\beta} \mathrm{p} K_{\mathrm{a}}+C
$$

linear free-energy relation Online we...- < >

Also contains definition of: linear Gibbs energy relation

A linear correlation between the logarithm of a rate constant or equilibrium constant for one series of reactions and the logarithm of the rate constant or equilibrium constant for a related series of reactions. Typical examples of such relations (also known as linear Gibbs energy relations) are the Bronsted relation, and the Hammett equation.
The name arises because the logarithm of an equilibrium constant (at constant temperature and pressure) is proportional to a standard free energy. (Gibbs energy) change, and the logarithm of a rate constant is a linear function of the free energy. (Gibbs energy) of activation.
It has been suggested that this name should be replaced by linear Gibbs energy relation, but at present there is little sign of acceptance of this change. The area of physical organic

Cite as: IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Online version (2019-) created by S. J. Chalk. ISBN O-9678550-9-8. https://doi.org/10.1351/goldbook.
©iv.III PDF Text JSON Histon Feedback
Last revised: February 24, 2014
trend looks linear over a small enough $\Delta G_{\mathrm{AB}}{ }^{\circ}$ range

J. Albery, Ann. Rev. Phys. Chem., 1980, 31, 227-263
R. A. Marcus, Farad. Discuss. Chem. Soc., 1982, 74, 7-15

Butler-Volmer equation

(REVIEW) 154

$$
n \mathrm{e}^{-, \mathrm{M}}+\mathrm{O} \rightleftarrows \mathrm{R}^{n-}
$$

$$
j_{E}=n F\left(\boldsymbol{k}_{\boldsymbol{b}, \boldsymbol{E}}^{\prime} c_{\mathrm{R}, z_{\mathrm{o}}}-\boldsymbol{k}_{\boldsymbol{f}, \boldsymbol{E}}^{\prime} c_{\mathrm{O}, z_{0}}\right)
$$

$$
\text { ... for this example, let's assume that } n=1 . . .
$$

$$
j_{E}=F \boldsymbol{k}^{0}\left\{c_{\mathrm{R}, z_{0}} \exp \left(\frac{(1-\boldsymbol{\beta}) F\left(E-E^{\mathrm{o} \prime}\right)}{R T}\right)-c_{0, z_{0}} \exp \left(\frac{-\boldsymbol{\beta} F\left(E-E^{\mathrm{o}^{\prime}}\right)}{R T}\right)\right\}
$$

Current-Potential

 Characteristic$$
j_{E}=\boldsymbol{j}_{\mathbf{o}}\left\{\frac{c_{\mathrm{R}, z_{0}}}{c_{\mathrm{R}}^{*}} \exp \left(\frac{(1-\boldsymbol{\beta}) F \boldsymbol{\eta}}{R T}\right)-\frac{c_{\mathrm{O}, z_{0}}}{c_{\mathrm{O}}^{*}} \exp \left(\frac{-\boldsymbol{\beta} F \boldsymbol{\eta}}{R T}\right)\right\} \begin{aligned}
& \boldsymbol{\eta}=\left(\boldsymbol{E}-\boldsymbol{E}_{\mathrm{eq}}\right)=\boldsymbol{E}_{\mathrm{app}} \\
& \boldsymbol{j}_{\mathbf{o}}=F \boldsymbol{k}^{0} c_{\mathrm{R}}^{* \beta} c_{\mathrm{O}}^{*(1-\beta)}
\end{aligned}
$$

$\ldots c^{*}$ means bulk concentration... conversion is trivial using $\boldsymbol{E}_{\mathbf{e q}}=E^{0^{\prime}}-\frac{R T}{n F} \ln \frac{c_{\mathrm{R}}^{*}}{c_{\mathrm{O}}^{*}}$

$$
\begin{array}{r}
j_{E}=\boldsymbol{j}_{\mathbf{o}}\left\{\exp \left(\frac{(1-\beta) F \boldsymbol{\eta}}{R T}\right)-\exp \left(\frac{-\beta F \boldsymbol{\eta}}{R T}\right)\right\} \begin{array}{cc}
\begin{array}{c}
\text { Butler- } \\
\text { Volmer } \\
\text { Equation }
\end{array} & \mathrm{TS}_{\text {cath }}^{-1}=\left(\frac{d\left(\log \left|j_{E}\right|\right)}{d|\boldsymbol{\eta}|}\right)_{\text {cath }}
\end{array}=\frac{-\boldsymbol{\beta} F}{2.303 R T} \\
\ldots \text { asel }
\end{array}
$$

Butler-Volmer equation

... let's examine effects of $\boldsymbol{j}_{\mathbf{o}}\left(\right.$ or $\left.\boldsymbol{k}^{\mathbf{0}}\right)$...

Bard \& Faulkner, Chapter 3, Figure 3.4.2, Page 101

Butler-Volmer equation

... let's examine effects of $\boldsymbol{\beta}$ (or Tafel slope)...

Bard \& Faulkner, Chapter 3, Figure 3.4.3, Page 101
... recall that... $\boldsymbol{\eta}=\left(\boldsymbol{E}-\boldsymbol{E}_{\text {eq }}\right)=\boldsymbol{E}_{\text {app }}=\frac{\Delta G^{0}}{-n F}$

Charge Transfer across Electrified Interfaces

J. O'M. Bockris ${ }^{1}$ and Z. Nagy ${ }^{2}$
Electrochemistry Laboratory
University of Pennsylvania
Philadelphia, 19104

* g is a lateral interaction term

Schmickler \& Santos, Chapter 6, Figure 6.1, Page 53

Symmetry Factor and Transfer Coefficient

A source of confusion in electrode kinetics

Symmetry factor (β): change in the activation free energy of the cathodic elementary reaction step, expressed as a fraction of $\boldsymbol{E}_{\text {app }}$

Transfer coefficient (α_{j}): change in the (cath)odic/(an)odic reaction rate expressed as a change in the activation free energy as a fraction of $E_{\text {app }}$

Do the two transfer coefficients always have to sum to one?

$$
\begin{gathered}
\mathrm{TS}_{\text {cath }}^{-1}=\left(\frac{d\left(\log \left|j_{E}\right|\right)}{d|\boldsymbol{\eta}|}\right)_{\text {cath }}=\frac{-\boldsymbol{\alpha}_{\text {cath }} F}{2.303 R T} \\
\mathrm{TS}_{\mathrm{an}}^{-1}=\left(\frac{d\left(\log j_{E}\right)}{d \boldsymbol{\eta}}\right)_{\mathrm{an}}=\frac{\boldsymbol{\alpha}_{\mathrm{an}} F}{2.303 R T}
\end{gathered}
$$

Rate-Determining Step (RDS)

$$
D+A \rightleftarrows D^{+}+A^{-}
$$

$$
\frac{\partial^{2} \phi(x)}{\partial x^{2}}=-\frac{\rho}{\varepsilon}
$$

$$
\mathbf{E}=-\frac{\partial \phi(x)}{\partial x}
$$

But wait... is this the elementary reaction step for electron transfer between

a (D)onor and an (A)cceptor in solution?
 Nope!

$$
\phi(r)=\frac{q}{4 \pi \varepsilon r}
$$

RDS: Pre-Equilibrium Approximation

... seemingly totally unrelated... how does one determine the observed resistance of 3 resistors in parallel, or 3 capacitors in series? ... it's approximately equal to the smaller one... okay... but mathematically, add their reciprocals... and reciprocate

$$
D+A \stackrel{1}{\rightleftarrows}(D, A) \stackrel{2}{\rightleftarrows}\left(D^{+}, A^{-}\right) \stackrel{3}{\rightleftarrows} D^{+}+A^{-}
$$

... so how does one determine the observed rate constant for 3 reactions in series?
\ldots it's the same general idea... $\frac{1}{\boldsymbol{k}_{f, \mathbf{o b s}}}=\frac{1}{k_{1 f}}+\frac{1}{k_{2 f}^{\prime}}+\frac{1}{k_{3 f}^{\prime}} \ldots$ where $\frac{\partial[\mathrm{D}]}{\partial t}=\frac{\partial[\mathrm{A}]}{\partial t}=-\boldsymbol{k}_{f, \mathbf{o b s}}[\mathrm{D}][\mathrm{A}]$
... except that Step 2 is preceded by Step 1... and Step 3 is preceded by Steps 1 and 2
... and only one of those Steps will dominate the observed rate when it is the slowest step
... so the (pre)ceding steps must be much faster... thus assume they are in equilibrium...

$$
\frac{1}{\boldsymbol{k}_{f, \mathrm{obs}}}=\frac{1}{k_{1 f}}+\frac{1}{K_{1} k_{2 f}}+\frac{1}{K_{1} K_{2} k_{3 f}}=\frac{1}{k_{1 f}}+\frac{k_{1 b}}{k_{1 f} k_{2 f}}+\frac{k_{1 b} k_{2 b}}{k_{1 f} k_{2 f} k_{3 f}}
$$

... and for completion, what if 3 (same-order) reactions occur simultaneously, i.e. in parallel?
\ldots it's as easy as it seems... $\boldsymbol{k}_{\boldsymbol{f}, \mathbf{o b s}}=k_{1 f}+k_{2 f}+k_{3 f}=\frac{1}{\tau_{1 f}}+\frac{1}{\tau_{2 f}}+\frac{1}{\tau_{3 f}}=\frac{\mathbf{1}}{\boldsymbol{\tau}_{f, \mathbf{o b s}}}$

RDS: Steady-State Approximation

... but what if we want to determine $\frac{\partial\left[\mathrm{D}^{+}\right]}{\partial t}=\frac{\partial\left[\mathrm{A}^{-}\right]}{\partial t} \ldots$ and some preceding steps are fast? \ldots when all are fast, except Step 1, won't $\boldsymbol{k}_{\boldsymbol{f}, \mathbf{o b s}}=k_{1 f}$ then?... not always...

$$
D+A \stackrel{1}{\rightleftarrows}(D, A) \stackrel{2}{\rightleftarrows}\left(D^{+}, A^{-}\right) \stackrel{3}{\rightleftarrows} D^{+}+A^{-}
$$

Assume that the middle steps come and go quickly... so each has a small steady-state conc...

$$
\begin{aligned}
& \frac{\partial[(\mathrm{D}, \mathrm{~A})]}{\partial t}=0=-k_{2 f}[(\mathrm{D}, \mathrm{~A})]+k_{1 f}[\mathrm{D}][\mathrm{A}] \ldots \text { and thus }[(\mathrm{D}, \mathrm{~A})]=\frac{k_{1 f}[\mathrm{D}][\mathrm{A}]}{k_{2 f}} \\
& \frac{\partial\left[\left(\mathrm{D}^{+}, \mathrm{A}^{-}\right)\right]}{\partial t}=0=-k_{3 f}\left[\left(\mathrm{D}^{+}, \mathrm{A}^{-}\right)\right]+k_{2 f}[(\mathrm{D}, \mathrm{~A})] \ldots \text { and thus }\left[\left(\mathrm{D}^{+}, \mathrm{A}^{-}\right)\right]=\frac{k_{2 f}[(\mathrm{D}, \mathrm{~A})]}{k_{3 f}}
\end{aligned}
$$

\ldots which means that $\left[\left(\mathrm{D}^{+}, \mathrm{A}^{-}\right)\right]=\frac{k_{1 f} k_{2 f}[\mathrm{D}][\mathrm{A}]}{k_{2 f} k_{3 f}}=\frac{k_{1 f}[\mathrm{D}][\mathrm{A}]}{k_{3 f}}$
\ldots since $\frac{\partial\left[\mathrm{D}^{+}\right]}{\partial t}=\frac{\partial\left[\mathrm{A}^{-}\right]}{\partial t}=k_{3 f}\left[\left(\mathrm{D}^{+}, \mathrm{A}^{-}\right)\right] \ldots$ this is just equal to $k_{1 f}[\mathrm{D}][\mathrm{A}] \ldots$ and $\boldsymbol{k}_{\boldsymbol{f}, \mathbf{o b s}}=k_{1 f}$
... which is what the pre-equilibrium approximation would have predicted too, so... consistent!

Charge Transfer across Electrified Interfaces

J. O'M. Bockris ${ }^{1}$ and Z. Nagy ${ }^{2}$
Electrochemistry Laboratory University of Pennsylvania

Philadelphia, 19104

Symmetry Factor and Transfer Coefficient

A source of confusion in electrode kinetics

Volmer-Tafel mechanism $V(E): \mathrm{H}^{+}+\mathrm{e}^{-} \rightleftarrows \mathrm{M}-\mathrm{H}$ $T(C): 2 \mathrm{M}-\mathrm{H} \rightleftarrows \mathrm{H}_{2}+M$

J. O'M. Bockris ${ }^{1}$ and Z. Nagy ${ }^{2}$
Electrochemistry Laboratory
University of Pennsylvania
Philadelphia, 19104
Philadelphia 19104

A source of confusion in ele
 \title{
Symmetry Factor and Transfer Coefficient
 \title{
Symmetry Factor and Transfer Coefficient
 α
}

Case 1: $\mathrm{V}=$ pre-equilibrium; $\mathrm{H}=\mathrm{RDS} ; E=E_{\mathrm{eq}}$; rapidly stir solution $j_{E}=2 j_{\mathrm{o}}\left\{\frac{c_{\mathrm{H}_{2}, z_{0}}}{c_{\mathrm{H}_{2}}^{*}} \exp \left(\frac{(1-\boldsymbol{\beta}) F \boldsymbol{\eta}}{R T}\right)-\frac{c_{\mathrm{M}-\mathrm{H}, z_{0}}}{c_{\mathrm{M}-\mathrm{H}, z_{0}}^{*}} \frac{c_{\mathrm{H}^{+}, z_{\mathrm{o}}}}{c_{\mathrm{H}^{+}}^{*}} \exp \left(\frac{-\boldsymbol{\beta} F \boldsymbol{\eta}}{R T}\right)\right\}$ $j_{E}=2 j_{\mathrm{o}}\left\{\exp \left(\frac{(1-\boldsymbol{\beta}) F \boldsymbol{\eta}}{R T}\right)-\theta_{\mathrm{M}-\mathrm{H}} \exp \left(\frac{-\boldsymbol{\beta} F \boldsymbol{\eta}}{R T}\right)\right\}$
$j_{E}=2 j_{\mathrm{o}}\left\{\exp \left(\frac{(1-\boldsymbol{\beta}) F \boldsymbol{\eta}}{R T}\right)-\frac{c_{\mathrm{H}^{+}, z_{\mathrm{o}}}}{c_{\mathrm{H}^{+}}^{*}} \exp \left(\frac{-F \boldsymbol{\eta}}{R T}\right) \exp \left(\frac{-\boldsymbol{\beta} F \boldsymbol{\eta}}{R T}\right)\right\}$

$$
j_{E}=2 j_{0}\left\{\exp \left(\frac{(1-\boldsymbol{\beta}) F \boldsymbol{\eta}}{R T}\right)-\exp \left(\frac{-(\mathbf{1}+\boldsymbol{\beta}) F \boldsymbol{\eta}}{R T}\right)\right\}
$$
 \title{

Charge Transfer across Electrified Interfaces
}
 \title{
Charge Transfer across Electrified Interfaces
}

Charge Transfer across Electrified Interfaces

J. O'M. Bockris ${ }^{1}$
and Z. Nagy ${ }^{2}$

Electrochemistry Laboratory University of Pennsylvania

Philadelphia, 19104

Case 2: V = RDS; H = pre-equilibrium; $E=E_{\text {eq }}$; rapidly stir solution $j_{E}=2 j_{0}\left\{\frac{c_{\mathrm{M}-\mathrm{H}, z_{0}}}{c_{\mathrm{M}-\mathrm{H}, z_{0}}^{*}} \exp \left(\frac{(1-\boldsymbol{\beta}) F \boldsymbol{\eta}}{R T}\right)-\frac{c_{\mathrm{H}^{+}, z_{0}}}{c_{\mathrm{H}^{+}}^{*}} \exp \left(\frac{-\boldsymbol{\beta} \boldsymbol{F} \boldsymbol{\eta}}{R T}\right)\right\}$ $j_{E}=2 j_{\mathrm{o}}\left\{\theta_{\mathrm{M}-\mathrm{H}} \exp \left(\frac{(1-\boldsymbol{\beta}) F \boldsymbol{\eta}}{R T}\right)-\exp \left(\frac{-\boldsymbol{\beta} F \boldsymbol{\eta}}{R T}\right)\right\}$

$$
j_{E}=2 j_{\mathrm{o}}\left\{\frac{c_{\mathrm{H}_{2}, z_{0}}}{c_{\mathrm{H}_{2}}^{*}} \frac{c_{\mathrm{H}^{+}}^{*}}{c_{\mathrm{H}^{+}, z_{\mathrm{o}}}^{*}} \exp \left(\frac{F \boldsymbol{\eta}}{R T}\right) \exp \left(\frac{(1-\boldsymbol{\beta}) F \boldsymbol{\eta}}{R T}\right)-\exp \left(\frac{-\boldsymbol{\beta} \boldsymbol{F} \boldsymbol{\eta}}{R T}\right)\right\}
$$

$$
j_{E}=2 j_{0}\left\{\exp \left(\frac{(2-\boldsymbol{\beta}) F \boldsymbol{\eta}}{R T}\right)-\exp \left(\frac{-\boldsymbol{\beta} F \boldsymbol{\eta}}{R T}\right)\right\}
$$

Symmetry Factor and Transfer Coefficient

A source of confusion in eler
α

ㅅ. Volmer-Heyrovsky mechanism
V (E): $\mathbf{H}^{+}+\mathbf{e}^{-} \rightleftarrows \mathbf{M} \mathbf{- H}$
$H(E): M-H+e^{-}+H^{+} \rightleftarrows H_{2}+M$

$$
\alpha_{\text {cath }}+\alpha_{\mathrm{an}}=\beta+(2-\beta)=2!
$$

Photophysical Processes

Prof. Shane Ardo
Department of Chemistry
University of California Irvine

Today's Critical Guiding Question

What continuity/conservation laws are most important for photophysical processes like absorption and emission of photons?

Photophysical Processes

- Blackbody radiation, Photon properties, Light-Matter interactions, Conservation laws, Einstein coefficients
- Jablonski diagram, Spin multiplicity, Internal conversion, Intersystem crossing, Thexi state, Kasha-Vavilov rule, Stokes shift, PL
- Born-Oppenheimer approximation, Franck-Condon principle, Transition dipole moment operator, Franck-Condon factors, Beer-Lambert law, Absorption coefficient, Oscillator strength, Absorptance
- Luminescence processes, Selection rules, Charge-transfer transitions, Spin-Orbit coupling, Heavy-atom effect, $E-k$ diagrams, Jortner energy gap law, Conical intersections, Energy transfer, Exciplex/Excimer
- Photoluminescence spectrometer, Emission/Excitation spectra, Inner filter effects, Anisotropy, Excited-state lifetime, Emission quantum yield

Schrödinger Equation

(REVIEW) 167

Elegant master equation that allows one to determine internal energies, E_{n}, of a system

$$
\widehat{\boldsymbol{H}} \psi_{n}(x)=\mathbf{E}_{\boldsymbol{n}} \psi_{n}(x)
$$

... but this is not good enough for photochemists where time-varying oscillating electromagnetic fields often interact with matter...

$$
\mathrm{E}=h v=\hbar \omega \text { (Planck) }
$$

$$
\widehat{H} \Psi_{n}(x, t)=i \hbar \frac{\partial}{\partial t} \Psi_{n}(x, t)
$$

$$
\mathrm{E}=m c^{2}=p c(\text { Einstein })
$$

$$
p=\frac{h v}{c}=\frac{h}{\lambda}=h \bar{v}=\hbar k \text { (de Broglie) }
$$

... so, how does one solve either of these Schrödinger equations?... We need to know \widehat{H} !

$$
\widehat{H}=\widehat{T}+\widehat{V}
$$

... um... well that didn't really help us at all... anyway, so instead, we need to know \widehat{T} and \widehat{V} ?

$$
\widehat{T}(x)=\mathrm{KE}=\frac{1}{2} m \hat{v}^{2}=\frac{\hat{p}^{2}}{2 m} \ldots \text { with }(\widehat{\boldsymbol{p}}) \text { momentum }=(m) \text { ass } \times(\hat{v}) \text { elocity }=-i \hbar \frac{\partial}{\partial x} \ldots \text { Wow, right? }
$$ $\widehat{V}(x)=\mathrm{PE}=0 \ldots$ for particle-in-a-box...

$\widehat{V}(x)=\frac{1}{2} k_{f} x^{2}=\frac{1}{2} m \omega^{2} x^{2} \ldots$ for harmonic oscillator, with k_{f} (force const), ω (angular freq)...
$\widehat{V}(r)=-\frac{q^{2}}{4 \pi \varepsilon_{0} r} \ldots$ for Hydrogen atom, with $F=q N_{\mathrm{A}}$ (Faraday const), ε_{o} (vacuum permittivity)

Schrödinger Equation

(REVIEW) 168

But you still didn't tell us why we need to recall this equation

$$
\widehat{H} \psi_{n}(x)=(\widehat{T}+\widehat{V}) \psi_{n}(x)=\mathrm{E}_{n} \psi(x)
$$

... we need to fill internal energies, E_{n}, with particles... okay.

$$
\frac{\partial^{2} \phi(x)}{\partial x^{2}}=-\frac{\rho}{\varepsilon} \quad \mathbf{E}=-\frac{\partial \phi(x)}{\partial x}
$$

for a point charge..
$\Rightarrow \phi(r)=\frac{q}{4 \pi \varepsilon r}$
... and that under most chemical conditions, potential energy, $\widehat{V}(x)$, is electrostatic, $\phi(x)$
... which is actually not so limiting because there are only 4-ish forces of Nature
... and while we're at it, let's (re)learn overlap integral $\left(S_{n m}\right)$, expectation value ($\left.\left\langle p_{n}\right\rangle\right)$, bra-ket notation $\left(\left\langle\psi_{n} \mid \psi_{m}\right\rangle\right)$, and exponential tunneling probability...
Probability $\operatorname{Density}(x)=\left|\psi_{n}(x)\right|^{2}=\psi_{n}^{*}(x) \psi_{n}(x)$
... with $\psi_{n}^{*}(x)$ (complex conjugate)
Overlap integral, $S_{n m}=\int_{-\infty}^{\infty} \psi_{n}^{*}(x) \psi_{m}(x) d x=\left\langle\psi_{n} \mid \psi_{m}\right\rangle$
... with $\left\langle\Psi_{n}\right|$ ("bra") and $\left|\Psi_{m}\right\rangle$ ("ket")
Mean Energy, $\left\langle\mathrm{E}_{n}\right\rangle=\frac{\int_{-\infty}^{\infty} \Psi_{n}^{*}(x, t) \widehat{H} \Psi_{n}(x, t) d x}{\int_{-\infty}^{\infty} \Psi_{n}^{*}(x, t) \Psi_{n}(x, t) d x}=\left\langle\Psi_{n}\right| \widehat{H}\left|\Psi_{n}\right\rangle=\langle\widehat{H}\rangle$

Blackbody Radiation

Carnot efficiency limit, $\eta=\frac{w}{Q_{\mathrm{H}}}=\frac{Q_{\mathrm{H}}-Q_{\mathrm{C}}}{Q_{\mathrm{H}}}=1-\frac{Q_{\mathrm{C}}}{Q_{\mathrm{H}}}=1-\frac{T_{\mathrm{C}}}{T_{\mathrm{H}}}$

($T \approx 5790$ K) SUN

... light-driven processes between two blackbodies
... interconvert energy and work, like heat engines and refrigerators do

UNIVERSE
($T \approx 3 \mathrm{~K}$)
... if any two bodies are that the same temperature Turro, Chapter 4, Figure 4.1, Page 171
... and they only interact via radiation, i.e., photons (e.g., not chemical)
... then no work can be performed due to these photon exchanges
... and electrochemical potentials do not change due to them

Photon Properties \& Conservation Laws

Where does light come from?
Particle Type: Boson

Linear Polarization: $\overrightarrow{\mathrm{E}}$ and $\overrightarrow{\mathrm{B}}$
z-Direction Angular Momentum / Circular Polarization / Chirality / Helicity / Spin: $\pm \hbar= \pm \frac{h}{2 \pi}$ With what matter does light interact?

Wait... is a light a wave or a particle?
... I mean, is matter a wave or particle?
... I mean, doesn't everything exhibit wave-like and particle-like properties?

Fermion Angular Momentum (Orbital, Spin)
Magnitude: $\hbar \sqrt{J(J+1)}$
z-Direction: $m_{J} \hbar, m_{J}=[-J, J]$ in steps of 1
Multiplicity/Degeneracy, $g_{J}: 2 J+1$

Today’s Critical Guiding Question

What continuity/conservation laws are most important for photophysical processes like absorption and emission of photons?

DISCUSSION SESSION TOPICS

Charge Transfer across Electrified Interfaçes

Why are these "Potential Energy" surfaces so linear and asymmetric with "Distance"?

$$
E_{\mathrm{app}} \ll \frac{\lambda_{\mathrm{AB}}}{2}
$$

... with a transition state that is more reactant-

O'M. Bockris, et J. O’M. Bockris \& Z. Nagy, J. Chem. Educ., 1973, 50, 839-843

Fermi's (Second) Golden Rule

(REVIEW) 174

$$
j_{E}=n F\left(-\boldsymbol{k}_{f, E}^{\prime} c_{0, z_{0}}+\boldsymbol{k}_{b, E}^{\prime} c_{\mathrm{R}, z_{\mathrm{o}}}\right)
$$

$$
\boldsymbol{k}_{j}^{\prime}\left(\mathrm{cm} \mathrm{~s}^{-1}\right) \text {... a velocity! }
$$

$$
\lambda_{i f}=\frac{2 \pi}{\hbar}\left|M_{i f}\right|^{2} \rho_{f} \quad \text { Recall M-H... } k_{\mathrm{ET}}=\frac{2 \pi}{\hbar}\left|H_{\mathrm{DA}}\right|^{2} \frac{1}{\sqrt{4 \pi \lambda_{\mathrm{AB}} k T}} \exp \left(-\frac{\Delta G_{\mathrm{A}^{*}}}{k T}\right)
$$

Transition probability

for the interaction
states (DoS)
... divide the DoS term by $c_{i, z_{0}} .$.
frequency factor $\left(s^{-1}\right)$

$$
k_{\mathrm{f}}=\nu \int_{-\infty}^{\infty} \varepsilon_{\mathrm{red}}(\mathbf{E}) W_{\mathrm{O}}(\lambda, \mathbf{E}) f(\mathbf{E}) \rho(\mathbf{E}) d \mathbf{E}
$$ applied potential

R. Memming, Chapter 6, Semiconductor Electrochemistry

$$
k_{\mathrm{b}}=\nu \int_{-\infty}^{\infty} \varepsilon_{\mathrm{ox}}(\mathbf{E}) W_{\mathrm{R}}(\lambda, \mathbf{E})[1-f(\mathbf{E})] \rho(\mathbf{E}) d \mathbf{E}
$$

$$
\boldsymbol{k}_{f, E, \mathrm{obs}}^{\prime}=\int_{-\infty}^{\infty} \boldsymbol{k}_{f, \mathrm{E}}^{\prime} d \mathrm{E} \quad \boldsymbol{k}_{\boldsymbol{b}, \mathrm{E}, \mathrm{obs}}^{\prime}=\int_{-\infty}^{\infty} \boldsymbol{k}_{\boldsymbol{b}, \mathrm{E}}^{\prime} d \mathrm{E}
$$

energy

$$
j_{E, \mathrm{obs}}=n F\left(-\boldsymbol{k}_{\boldsymbol{f}, \boldsymbol{E}, \mathrm{obs}}^{\prime} C_{0, z_{0}}+\boldsymbol{k}_{\boldsymbol{b}, E, \mathbf{o b s}}^{\prime} C_{\mathrm{R}, z_{\mathrm{o}}}\right)
$$

Marcus-Gerischer Theory

(REVIEW) 175

Marcus-Gerischer Theory

quantum adiabatic electronic coupling
classical nuclear free-energy dependence

... as an aside... why is the data biphasic for the Current?
... RC-circuit double layer charging... followed by $1^{\text {st. }}$ order ET kinetics

C. E. D. Chidsey, Science, 1991, 251, 919-922
H. D. Sikes, J. F. Smalley, S. P. Dudek, A. R. Cook, M. D. Newton, C. E. D. Chidsey \& S. W. Feldberg, Science, 2001, 291, 1519-1523

Marcus-Gerischer Theory

(REVIEW) 177

Marcus-Gerischer Theory

(REVIEW) 178

Marcus-Gerischer Theory

- It is easy to sweep/vary the driving force, $\Delta G_{A B}$, by simply changing the electrochemical potential of electrons $\left(e^{-}\right)$in the (M)etal working electrode, $\bar{\mu}_{e}^{\mathrm{M}}$, through variations in $E_{\text {app }}$
- But evidence of the inverted region is a little challenging to clearly observe
... what if Chidsey had plotted the derivative of his data on the right?
... what do you expect that would have looked like?
... a nice Marcus parabola!
... I wish he had done that!

[^0]think about the metal!

Limiting Processes

(Current-Overpotential Equation)

Since Butler-Volmer theory is based on an LFER approximation, does it predict the presence of the Marcus inverted region? ... Nope!

$$
\lambda=0.85 \mathrm{eV}
$$

... but why do these current densities, j_{E}, and rate constants, $k_{j, E, o b s}^{\prime}$, plateau at large

Bard \& Faulkner, Chapter 3, Figure 3.4.5, Page 104 overpotential, η ? ... Not for the same reasons!

[^0]: .. anyway... why is λ so small in water?

