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... wow, those were some neat examples of photochemistry... (REVIEW/UPDATED) 209

... l wish | could learn more about all of them!
... Lucky you! ... Lucky us!

* Synchronous e-presentation: 11 min max + 2 min for Q&A, as 6 — 8 slides emailed
to me the day before the presentation

* One seminal and/or review publication (~*70% of the time); include background
and the nitty gritty of how it works; your main goal should be to bridge
information presented in the course to your topic, and to teach us something
entirely new

* One recent publication (within the last 5 years) (~30% of the time); include what
the paper did, the major discovery, and a critical photochemical assessment of
their data interpretation, including at least one graph or plot of useful data!

... this, plus discussion participation, equal 50% of your course grade, so take them
seriously, but HAVE FUN!



e-Presentation... topics... include...

* silver-halide photography

* photolithography

* vision

* vitamin D synthesis

* ultraviolet-light-driven DNA dimerization

* natural photosynthetic ion pump

* natural photosynthetic light-harvesting
complex and coherent energy transfer

* natural photosynthetic Z-scheme electron-
transport chain

* nanoparticle solar fuels photocatalysis

* dye-sensitized solar cells

 excitonic solar cells with trap states

* dye lasers

* medical applications

* fluorescence microscopy pH sensing

(REVIEW) 210

fluorescence microscopy electric field sensing
long-lived phosphorescence by organic
molecules

persistent luminescence by lanthanide-doped
phosphors

chemiluminescence

photoredox catalysis in organic synthesis
photolabile organic radicals

atmospheric chemistry in the ozone layer with
refrigerants

photolabile inorganic coordination compounds
light-induced excited spin-state trapping
(LIESST) spin-crossover effect

molecular solar thermal energy storage (MOST)
triplet-triplet annihilation upconversion
hot/ballistic excited-state electron transfer

... Or propose your own to me... but | really do prefer topics from this list

You will get one of your top 5 choices... so please email them to me ASAP!
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Today’s Critical Guiding Question

What continuity/conservation laws are most important for
photophysical processes like absorption and emission of photons...
for real this time, again: Part 3?7




. (UPDATED) 213
Photophysical Processes

* Blackbody radiation, Photon properties, Light—Matter interactions,
Conservation laws, Einstein coefficients

* Jablonski diagram, Spin multiplicity, Internal conversion, Intersystem
crossing, Thexi state, Kasha—Vavilov rule, Stokes shift, PL

* Born—Oppenheimer approximation, Franck—Condon principle,
Transition dipole moment operator, Franck—Condon factors, Beer—
Lambert law, Absorption coefficient, Oscillator strength, Absorptance

* Luminescence processes, Selection rules, Charge-transfer transitions,
Spin—Orbit coupling, Heavy-atom effect, E—k diagrams, Jortner energy
gap law, Conical intersections, Energy transfer, Exciplex/Excimer

* Photoluminescence spectrometer, Emission/Excitation spectra, Inner
filter effects, Anisotropy, Excited-state lifetime, Emission quantum yield
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Light—Matter Interactions
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Turro, Chapter 4, Figure 4.6, Page 189
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Reactive

Jablonski Dlagram & Spin Multiplicity

~ Spectroscopic intermediate
(a) R . P states Funnel J Spectroscopic
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Scheme 1.3 Exemplar paradigm for an organic photochemical reaction that proceeds
through a triplet state. N Molecular photochemistry -

Turro, Chapter 1, Scheme 1.3, Page 13 Turro, Chapter 1, Scheme 1.5, Page 21

.. Angular Momentum Energy Degeneracy, g;: 2] + 1
. when ] =0, g; = 1... sounds like a "Singlet (S or *X)"
.when ] =1, g; = 3... sounds like a "Triplet (T or 3X)"

What is the origin of the
names "singlet" and "triplet"?



Jablonski Diagram

Jablonski Energy Diagram (E-S5)

(REVIEW) 216

Kasha—Vavilov "rule": polyatomic molecular entities emit and react
predominantly from the lowest-energy excited state of a given
multiplicity, and thus emission is generally independent of excitation
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https://micro.magnet.fsu.edu/primer/java/jablonski/jabintro/index.html

Turro, Chapter 1, Scheme 1.4, Page 17
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Thermally Equilibrated Excited (Thexi) State

Electronic Absorption and Emission Bands Length scales and timescales associated with plasmonic hot carriers
Photon Energy (Electron-Volts)
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00
https://micro.magnet.fsu.edu/primer/techniques/fluorescence/fluorescenceintro.html ... wait, do molecules and materials Undergo the

same physical processes and follow the same

.. and why are these spectra plotted as a function of : .
y P P laws of the universe?... shocking, isn't it?1?17?]

wavenumber... and not wavelength?
.. 50 that you can see the mirror-image "rule"

P. Narang, R. Sundararaman & H. A. Atwater, Nanophoton., 2016, 5, 96-111
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Stokes Shift

.. Why are these spectra less structured, and with peaks that are further separated? e higher T
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https://micro.magnet.fsu.edu/primer/techniques/fluorescence/fluorescenceintro.html
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Potential (V vs SCE)

.. solvent reorganization in the excited-statel... so is this correct?... No! Ugh!
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Jablonski Diagram
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f— vy —] b
. . a
QM Harmonic Oscillator Model @ (b)
X, Xy
D0 ®—@ - quantized energy states...
.9 0 wE, =W+ 1hv=(v+ 1w V=10 \ / =0
V= . ooy e
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Turro, Chapter 2, Figure 2.5, Page 76
rXY — rXY — =

Probability Density(x) = |x, (x)1? = xu(x)x, (x)

Turro, Chapter 2, Figure 2.6, Page 76



Jablonski Diagram

QM Anharmonic Oscillator Model
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Turro, Chapter 2, Figure 2.7, Page 81
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Nuclear Terms & F—C Factors

Turro, Chapters 2 and 3

kobs ~ Pl< \ll,lPl';_.zl\llz >]? Fermi's golden rule

Observed Zero-point Motion-
Rate Constant Limited Rate Constant “Fully Allowed Rate™
; — () -
kObS = Amax .’2‘ X .f\' X fS
—— -~ -
Prohibition o maximal Prohibition fuctors due to changes in
caused by “selection rules” electronic, nuclear, or spin configuration
W S WO X S
V .V‘

(orbitals K nucler Kspin)

“True” molecular wave function : T
Approximate solution to Eg. 2.1

Exact solution to Eq. 2.1

... separable due to the Born—Oppenheimer approximation

l\'(, < P\- 7 >2 3 p
kobs= max s0|| ,Ihl‘)b._ X < '!,IIPs()l’wz > X [< XI|X2 >2]
AEY, AEY,

T~

s -’

Vibrationad overlup
Vibrational coupling Spin-orbatal coupling Franck-Condon factors

Overlap integral, S, = ffoooxf(x)Xz (x) dx = (x11x2)
Franck—Condon factor, {x1|x2)?

Energy

v=0->1 spectrum

N\

Very weak absorption
Weak absorption
Moderate absorption
Strong absorption

Turro, Chapter 3, Figure 3.3, Page 129

Transition to what vibronic state is
most favorable/rapid by absorption?
... and what about by emission?
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B—O Approximation, F—C Principle, TDM Operator

* Born—Oppenheimer (B—0) approximation: separability of electronic and nuclear terms in the wavefunction
v ~ WoxS

(orbitals Knucles Kspin )
Approximate solution to Eq. 2.1

“True” molecular wave function
Exact solution to Eq. 2.1

* Franck—Condon (F-C) principle: Nuclei are fixed during electron-transfer between orbital (think Libby)

A

* Transition dipole moment (TDM) operator, u:

u=ue+uN=—le,~+eZZjRj. AG° R
i J

The probability amplitude P for the transition between these two states is given by

P={|ply) = /z/)’*p,v,bd'r, Y = Pehys

P = (bl | s [detboths) = / G (1, + g e botds dr

Reorganization |[«—

~ [wevsvtnpesbiar+ [wevsvtupv b dr I¢
[«——>| Relaxation
- / Wi, / W 1, e dre / Wi, dr, + / W dr / W8 o A, / Wi, dr,

~

A

e e o P4 Reaction coordinate
Franck—Condon  orbital spin 0

factor selection rule selection rule Turro, Chapter 7, Figure 7.12, Page 429
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Today’s Critical Guiding Question

What continuity/conservation laws are most important for
photophysical processes like absorption and emission of photons...
for real this time, again: Part 3?7




DISCUSSION SESSION
TOPICS
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Luminescence Processes

... Photo... and Chemi... and Mechano... Oh My!

CHEMILUMINE SCENCE PHOTOLUMINE SCENCE MECHANOLUMINE SCENCE _)f CATHODOLUMINESCENCE |
\(Actionl by Chemical Process) (Intake of Photons) (Due t_ouechanical Action) " (Collision of Electrons)
( ‘ PHOSPHORESCENCE ( \
BIOLUMINESCENCE M PIEZOLUMINESCENCE | || et OLUMItE St il
FLUORESCENCE ( |
—-»‘cmoowmnssceuce] e — _,IFRACTOLUMINESCENCE, |y THERMOLUMINESCENCE
~ (Initiated by Heating)
" J TRIBOLUMINE SCENCE .
ELECTROCHEMILUMINESCENCE Vel R behal bt e 3| _ RADIOLUMINESCENCE
(Radiation Causing Collision)
SONOLUMINESCENCE - ’

LYOLUMINESCENCE

https://www.sciencedirect.com/science/article/pii/$2214785321017272

... well | guess it makes sense... it’s just conservation of energy... and momentum, of course...
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f hvgee=2*
gy ) * &IAH
Four m-echanlsmsj...- | —— S
(1) Radiative (emission + reabsorption) pp——
... as described by Fermi’s Golden Rule... overlap matters a lot...
* %
o0 ' x . &
o JF . . }\fld)\ f() FD(X) SA(X)X4 d\ 1ml))onor Acceptor Spectral Overlap Region
- € - Abs Emissio
(1) p(A)ea(A) f(fFD(k)dk 8 s;mﬂon CFP DsRFP n ot A——D ¢ Ar
0
2
... Jis the (spectral) overlap integral 560
... Fp is the Donor fluorescence intensity ©
... €, is the Acceptor absorption coefficient %40
U—_ B gzo
(2) Coherent: ™" - - don
_ 4 5 Sk
601 S S 350 400 450 500 550 600 650 700
0 20 40 80 80 100 Figure 4 Wavelength (Nanometers)
time (fs)

. _ https://www.olympus-lifescience.com/en/microscope-
https://pubs.acs.org/doi/10.1021/acs.jpclett.7b01791 resource/primer/techniques/fluorescence/fret/fretintro/

.. and rather unrelated... when an excited state species (D*) reacts with a ground-state species (A)...
.. they form an excited complex (exciplex) or, when A = D, excited dimer (excimer) N.Turro, Pure Appl. Chem., 1977, 49, 405-429
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Energy Transfer Processes gi

Four mechanismes...

=

(3) Forster Resonance Dipole-Dipole Coupling (1948) 7
2% —>
Vir)=— gz _ kil (cos B2 — 3 cos by cosby) Donor
47e,rs 477607':1)’2 goonor. 8B Transition
1 ’12 +00 '
WET — 29 < 2|MAAI ‘2/ dwo—ﬁ)s (w)o-]l%or (UJ) N $ ¢
h = 08 o
2 . R A%Z%?Sﬁgn z g
OpKk~ (9000(In10) 1 ( 0)6 Sorpd rarhcceptor o
falr) = Tpr® ( 128n°Nn* ) JFD(K)SA(}L)N‘CD\ - g r Figure 5 piane ° \Acceptor
| i . cpese || TP
.. Fy is the Donor area-normalized fluorescence intensity e 2 o o
.. €, is the Acceptor absorption coefficient
.. @Qp is the Donor quantum yield for emission k2= (cos O;-3cos 8 cos 8,12

.. T is the Donor excited-state lifetime
.. k2is the orientation factor

. . . . . . Figure 13.5. Dependence of the orientation factor k2 on the direction
.. Ry is the Forster distance (at r = R,, energy transfer is 50% efficient) of the emission dipole of the donor and the absorption dipole of the

acceptor.

Should photon absorption selection rules apply?... You betchal Lakowicz, Chapter 13, Figure 13.5, Page 449

K’ =(sinfpsinf,cos® -2 cosBp cosOA)2
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Energy Transter Processes - .. .. ==
<__V12_Z : +J —dr, + Vyc(n) 1 yi(n) = gy(r,)
Four mechanisms... 2m. R AmET ] ATE,
(4) Dexter Electron Exchange Interaction (1953) ... quantum effect due to the Pauli principle
... electron spin is unchanged during pseudo-paired electron transfer
... rate constant depends on Wavefunctlon overlap wD*AWDA*’Q
kE.T (electron exchange) o N3 J
" FRET ,
_@ — 10 %\
>. fy A @'_ “\
%DT Slu | | 3¢ —) 5§, : Sl 1 (Ry\© N Inke 7k, @ 6InR , (FORSTER)
2l 4] T ko =) T
\Vy 2 v\ Tp 7
O OO D0 O INkgg/ky Of == ==-\--=--3 ST
... Dexter transfer i |
A =— Inkg;/ky @ 2R,/L (DEXTER)
& TT ::' :: S :’; “'; -2 -10 s - \ Y T B S
¥ ] 1Y = % | T, ker o« Jesp [T’"} O 10 20 30 40 50
OSSR OI0 Q0 Rou (A)

... only Dexter energy transfer can result in fast T-T EnT
https://pubs.acs.org/doi/10.1021/acs.chemrev.6b00215
N. Turro, Pure Appl. Chem., 1977, 49, 405-429
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