

UCI CHEM267 – Photochemistry, Spring 2023

234

Lecture #10 of 12

Prof. Shane Ardo Department of Chemistry University of California Irvine

UCI CHEM267 – Photochemistry, Spring 2023

235

Photophysical Processes

Prof. Shane Ardo Department of Chemistry University of California Irvine

Today's Critical Guiding Question

236

What continuity/conservation laws are most important for photophysical processes like absorption and emission of photons... for real this time, again: Part 4?

Photophysical Processes

(UPDATED) 237

- Blackbody radiation, Photon properties, Light–Matter interactions, Conservation laws, Einstein coefficients
- Jablonski diagram, Spin multiplicity, Internal conversion, Intersystem crossing, Thexi state, Kasha–Vavilov rule, Stokes shift, PL
- Born–Oppenheimer approximation, Franck–Condon principle, Transition dipole moment operator, Franck–Condon factors, Beer– Lambert law, Absorption coefficient, Oscillator strength, Absorptance
- Luminescence processes, Selection rules, Charge-transfer transitions, Spin–Orbit coupling, Heavy-atom effect, *E–k* diagrams, Jortner energy gap law, Conical intersections, Energy transfer, Exciplex/Excimer
- Photoluminescence spectrometer, Emission/Excitation spectra, Inner filter effects, Anisotropy, Excited-state lifetime, Emission quantum yield

B–O Approximation, F–C Principle, TDM Operator

Selection Rules

Angular Momentum Quantum Numbers Photon... which came from matter: s = 1, $m_s = \pm 1$ Electron (Orbital): l, $m_l = [-l, l]$ in steps of 1

240

 $= \underbrace{\int \psi_{*}^{*} \psi_{v} d\tau_{*}}_{\text{Franck-Condon}} \underbrace{\int \psi_{v}^{*} \mu_{v} \psi_{v} d\tau_{v}}_{\text{orbital}} \underbrace{\int \psi_{*}^{*} \psi_{v} d\tau_{*}}_{\text{spin}}$

Electron (Spin): $s = \frac{1}{2}, m_s = \left[-\frac{1}{2}, \frac{1}{2}\right]$

... well these are just overlaps... and so the more overlap, the more favorable a transition...

... the F–C factor makes sense based on pictures on previous slides ... but what does μ_e do to a wavefunction?...

... maybe we don't know, but it better change the angular momentum properly for a photon ... and what are spin wavefunctions?... just symbols!... spin does not appear in μ ... it's just math...

 \dots so, the spin wavefunctions only overlap when they are identical... meaning spin does not change

Atomic Selection "rules"

- Orbital angular momentum (Laporte "rule"): $\Delta l = \pm 1...$ as $l_f = l_i \pm s_{\text{photon}}$ Obtain angular momentum (<u>targorise</u> tute), at $\pm 1...$ as $r_{-} = 1...$ proton Spin angular momentum (<u>Wigner</u> "rule"). **Am**_S = 0, μ does not act on spin Orbital z-direction angular momentum: $\Delta m_l = 0, \pm 1...$ as $m_{l,f} = m_{l,l} \pm m_{s,photon}$

... the allowed 0 option can be envisioned as two vectors that are opposite in one direction

Heavy Molecule (Russell–Saunders L–S Coupling) Selection "rules". Total angular momentum: $\Delta J = 0, \pm 1...$ and $\Delta S = 0...$ and $\Delta L = 0, \pm 1$. Total z-direction angular momentum: $\Delta m_J = 0, \pm 1...$ and 0's are there for the same reason

... oh, now I see it in those spectra... and how the black spectrum is when there is a mixture

Absorption Coefficient & Beer–Lambert Law ²⁴⁵

····· [-···············
To describe attenuation of light intensity/power through matter due to absorption only one writes
$\frac{\partial I_{\nu}}{\partial z} = -\alpha_{\nu}I_{\nu}$ where α_{ν} is the linear Napierian absorption coefficient (cm ⁻¹)
Rearranging to $\frac{\partial l_{\nu}}{l_{\nu}} = -\alpha_{\nu}\partial z$, and integrating from $l_{\nu,\text{front}}$ to $l_{\nu,\text{back}}$ over ℓ leads to
$\ln\left(\frac{I_{\nu,\text{back}}}{I_{\nu,\text{front}}}\right) = -\alpha_{\nu}\ell \text{ or } I_{\nu} = I_{\nu,0}e^{-\alpha_{\nu}\ell}, \text{ where } I_{\nu} = I_{\nu,\text{back}} \text{ and } I_{\nu,0} = I_{\nu,\text{front}}$
where $T_{\nu} = \frac{I_{\nu}}{I_{\nu,0}}$ (transmittance) and $A_{\nu} = -\log(T_{\nu}) = \log\left(\frac{I_{\nu,0}}{I_{\nu}}\right)$ (absorbance)
but the absorption coefficient can take on many forms/units sorry
$\log\left(\frac{l_{\nu}}{l_{\nu,o}}\right) = -a_{\nu}\ell_{\cdots}$ where a_{ν} is the <u>linear decadic</u> absorption coefficient (cm ⁻¹) [not often used]
$\ln\left(\frac{I_{\nu}}{I_{\nu,0}}\right) = -\kappa_{\nu}c\ell$ where κ_{ν} is the <u>molar Napierian</u> absorption coefficient (M ⁻¹ cm ⁻¹) [n. o. u.]
since M^{-1} cm ⁻¹ = L mol ⁻¹ cm ⁻¹ = dm ³ mol ⁻¹ cm ⁻¹ , $\sigma_{\gamma} = \frac{1000\kappa_{\gamma}}{N_{\rm A}}$ is the absorption cross-section (cm ²)
$\log\left(\frac{l_{\nu}}{l_{\nu,o}}\right) = -\varepsilon_{\nu}c\ell$ where ε_{ν} is the <u>molar decadic</u> absorption coefficient (M ⁻¹ cm ⁻¹) finally!
leading to the Beer–Lambert law $A_{\nu} = \varepsilon_{\nu} c \ell$ a succinct and well-known equation in the end
https://goldbook.iupac.org/terms/view/A00037

Einstein Coefficients & Oscillator Strength

Today's Critical Guiding Question

247

What continuity/conservation laws are most important for photophysical processes like absorption and emission of photons... for real this time, again: Part 4?

DISCUSSION SESSION TOPICS

5/27/2023

(REVIEW) 249 Luminescence Processes ... Photo... and Chemi... and Mechano... Oh My! LYOL INESCENCE ii/S2214785321017272

... well I guess it makes sense... it's just conservation of energy... and momentum, of course...

Photoluminescence Spectrometer

wwELENGTH (nm) opter 2, Figure 2.14, Page 36

251

effectively multiplied by all of these!... Ugh!