Lecture \#10 of 12

Prof. Shane Ardo

Department of Chemistry
University of California Irvine

Photophysical Processes

Prof. Shane Ardo
Department of Chemistry
University of California Irvine

Today's Critical Guiding Question

What continuity/conservation laws are most important for photophysical processes like absorption and emission of photons... for real this time, again: Part 4?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad

Photophysical Processes

- Blackbody radiation, Photon properties, Light-Matter interactions, Conservation laws, Einstein coefficients
- Jablonski diagram, Spin multiplicity, Internal conversion, Intersystem crossing, Thexi state, Kasha-Vavilov rule, Stokes shift, PL
- Born-Oppenheimer approximation, Franck-Condon principle,

Transition dipole moment operator, Franck-Condon factors, BeerLambert law, Absorption coefficient, Oscillator strength, Absorptance

- Luminescence processes, Selection rules, Charge-transfer transitions, Spin-Orbit coupling, Heavy-atom effect, $E-k$ diagrams, Jortner energy gap law, Conical intersections, Energy transfer, Exciplex/Excimer
- Photoluminescence spectrometer, Emission/Excitation spectra, Inner filter effects, Anisotropy, Excited-state lifetime, Emission quantum yield

(REVIEW) 238 Absoppion
upectiven

Iransition to what vibronic state is most favorable/rapid by absorption? .. and what about by emission?
\qquad

$$
\begin{aligned}
& \text { B-O Approximation, F-C Principle, TDM Operator } \\
& \text { (REVIEW) } 239 \\
& \text { - Born-Oppenheimer (B-0) approximation: separability of electronic and nuclear terms in the wavefunction } \\
& \underbrace{\Psi} \underbrace{\sim}_{\substack{\Psi_{0} \times S}}
\end{aligned}
$$

- Franck-Condon (F-C) principle: Nuclei are fixed during electron-transfer between orbital (think Libby)
- Transition dipole moment (TDM) operator, $\boldsymbol{\mu}$:

$$
\mu=\mu_{c}+\mu_{x}=-\sum_{j} n+i \sum_{z, R_{n}}
$$

$-\underbrace{\int 00} d \boldsymbol{d}$

\qquad
\qquad
\qquad
\qquad

Turro, Chapter 7 , Figure 7.12 , Page 429

Selection Rules

Angular Momentum Quantum Numbers
well these are just overlaps... and so the more overlap, the more favorable a transition...
... the F-C factor makes sense based on pictures on previous slides
... but what does $\boldsymbol{\mu}_{e}$ do to a wavefunction?...
... maybe we don't know, but it better change the angular momentum properly for a photon
... and what are spin wavefunctions?... just symbols!... spin does not appear in $\boldsymbol{\mu} . .$. it's just math... ... so, the spin wavefunctions only overlap when they are identical... meaning spin does not change

Atomic Selection "rules"
Orbital angular momentum (Laporte "rule"): $\boldsymbol{\Delta l}= \pm \mathbf{1} \ldots$ as $l_{f}=l_{i} \pm s_{\text {photon }}$
Spin angular momentum (Wigner "rule"): $\Delta \boldsymbol{m}_{\boldsymbol{s}}=\mathbf{0} \ldots \boldsymbol{\mu}$ does not act on spin
Orbital z-direction angular momentum: $\Delta m_{\boldsymbol{l}}=\mathbf{0}, \pm \mathbf{1} \ldots$ as $m_{l, f}=m_{l, i} \pm m_{s, \text { photon }}$
... the allowed 0 option can be envisioned as two vectors that are opposite in one direction

Charge-Transfer Transitions \& S-O Coupling
The Hamiltonian for spin-orbit ($\mathrm{S}-\mathrm{O}$) coupling results in the heavy-atom effect.. ... and it also results in variation in the selection rules...
$\begin{aligned} & \text { Total angular momentum: } \boldsymbol{\Delta J}=\mathbf{0}, \mathbf{1} \\ & \text { Total z-direction angular momentum: } \boldsymbol{\Delta} \boldsymbol{m}_{\boldsymbol{J}}=\mathbf{0}, \mathbf{\pm}\end{aligned} \quad E_{\mathrm{SO}}=\boldsymbol{Z}^{4} \alpha^{2} h c R_{H}\left\{\frac{j(j+1)-l(l+1)-s(s+1)}{2 n^{3} l\left(l+\frac{1}{2}\right)(l+1)}\right\}$

.. oh, now I see it in those spectra... and how the black spectrum is when there is a mixture

Absorption Coefficient \& Beer-Lambert Law

To describe attenuation of light intensity/power through matter due to absorption only... one writes $\frac{\partial l_{v}}{\partial z}=-\alpha_{v} I_{v \ldots} \ldots$ where α_{v} is the linear Napierian absorption coefficient $\left(\mathrm{cm}^{-1}\right)$ Rearranging to $\frac{\partial I_{v}}{I_{v}}=-\alpha_{v} \partial z$, and integrating from $I_{v, \text { front }}$ to $I_{v, \text { back }}$ over ℓ leads to. $\ln \left(\frac{l_{v, \text { back }}}{l_{\nu, \text { front }}}\right)=-\alpha_{v} \ell \ldots$ or $I_{v}=I_{v, 0} e^{-\alpha_{v} \ell}$, where $I_{v}=I_{v, \text { back }}$ and $I_{v, 0}=I_{v, \text { front }}$
\therefore where $T_{v}=\frac{l_{v}}{l_{v}}$ (transmittance) and $A_{v}=-\log \left(T_{v}\right)=\log \left(\frac{l_{v, 0}}{l_{v}}\right)$ (absorbance) but the absorption coefficient can take on many forms/units... sorry...
$\log \left(\frac{l_{v}}{I_{v, 0}}\right)=-a_{v} \ell \ldots$ where a_{v} is the linear decadic absorption coefficient $\left(\mathrm{cm}^{-1}\right)$ [not often used]
$\ln \left(\frac{l_{v}}{l_{v, 0}}\right)=-\kappa_{v} c \ell \ldots$ where κ_{v} is the molar Napierian absorption coefficient $\left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ [n. o. u.] ... since $\mathrm{M}^{-1} \mathrm{~cm}^{-1}=\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}=\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}, \sigma_{v}=\frac{1000 \kappa_{v}}{N_{\mathrm{A}}}$ is the absorption cross-section (cm^{2})
$\log \left(\frac{I_{v}}{I_{v, 0}}\right)=-\varepsilon_{v} c \ell \ldots$ where ε_{v} is the molar decadic absorption coefficient $\left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) \ldots$ finally!...
... leading to the Beer-Lambert law... $A_{v}=\varepsilon_{v} c \ell \ldots$ a succinct and well-known equation in the end

\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad

Einstein Coefficients \& Oscillator Strength
 Oscillator strength $\left(f_{12}\right)$: integrated strength of Oscilator strength $\left(f_{12}\right)$: integrated strength of
 ... is the rate constant for emission equal to that of absorption? ... No way! allowed transition
 ... but Absorption $=-$ Stimulated Emission... but \neq Spontaneous Emission
 Spontaneous Emission Positive Absorption = Stimulated Absorption
 $\frac{\partial n_{1}}{\partial t}=A_{21} n_{2}$
 $\frac{\partial n_{1}}{\partial t}=-B_{12} n_{1} \rho(v)$
 Negative Absorption = Stimulated Emission
 $\frac{\partial n_{1}}{\partial t}=B_{21} n_{2} \rho(v)$
 Consider all possible reactions to be at equilibrium...

 $\frac{\partial n_{1}}{\partial t}=-\frac{\partial n_{2}}{\partial t}=0=\boldsymbol{A}_{21} n_{2}+\boldsymbol{B}_{21} n_{2} \rho(v)-\boldsymbol{B}_{12} n_{1} \rho(v) \ldots g_{1} \boldsymbol{B}_{12}=g_{2} \boldsymbol{B}_{21}=\frac{g_{1} c \sigma_{12}}{h v}=\frac{g_{1} e^{2} f_{12}}{4 \varepsilon_{0} m_{e} h v}$
 where $\rho(v)$ is an irradiance... in units of energy per volume per frequency, $v \boldsymbol{A}_{21}=\frac{8 \pi h v^{3}}{c^{3}} \boldsymbol{B}_{21}=\frac{16 \pi^{3} v^{3} \mu_{21}^{2}}{3 \varepsilon^{2}}$

Today's Critical Guiding Question

What continuity/conservation laws are most important for photophysical processes like absorption and emission of photons.. for real this time, again: Part 4?

247

Luminescence Processes

(REVIEW) 249
... Photo... and Chemi... and Mechano... Oh My!

https://wwwsctiencedirect.com/science/articiel/pii//22214785321017272
.. well I guess it makes sense... it's just conservation of energy... and momentum, of course...

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Photoluminescence Spectrometer

Lakowicr, Chapter 2 , Figure 2.13, Page 35

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

