

Lecture #10 of 12

Prof. Shane Ardo Department of Chemistry University of California Irvine

Photophysical Processes

Prof. Shane Ardo Department of Chemistry University of California Irvine

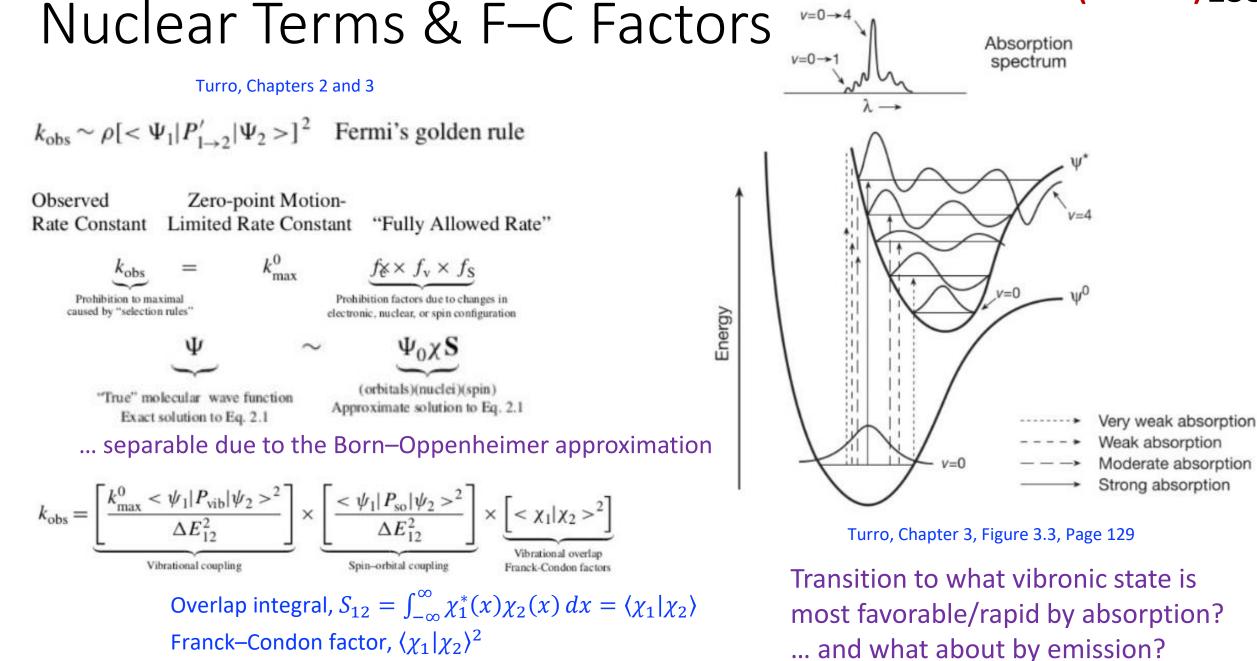
Today's Critical Guiding Question

What continuity/conservation laws are most important for photophysical processes like absorption and emission of photons... <u>for real this time, again: Part 4</u>?

Photophysical Processes

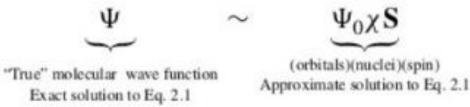
- Blackbody radiation, Photon properties, Light–Matter interactions, Conservation laws, Einstein coefficients
- Jablonski diagram, Spin multiplicity, Internal conversion, Intersystem crossing, Thexi state, Kasha–Vavilov rule, Stokes shift, PL
- Born–Oppenheimer approximation, Franck–Condon principle, Transition dipole moment operator, Franck–Condon factors, Beer– Lambert law, Absorption coefficient, Oscillator strength, Absorptance
- Luminescence processes, Selection rules, Charge-transfer transitions, Spin–Orbit coupling, Heavy-atom effect, *E–k* diagrams, Jortner energy gap law, Conical intersections, Energy transfer, Exciplex/Excimer
- Photoluminescence spectrometer, Emission/Excitation spectra, Inner filter effects, Anisotropy, Excited-state lifetime, Emission quantum yield

(REVIEW) 238



B–O Approximation, F–C Principle, TDM Operator

• Born–Oppenheimer (B–O) approximation: separability of electronic and nuclear terms in the wavefunction



• Franck–Condon (F–C) principle: Nuclei are fixed during electron-transfer between orbital (think Libby)

<u>Transition dipole moment (TDM) operator</u>, μ:

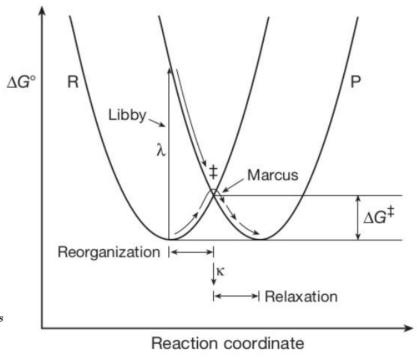
٦

$$\begin{split} \boldsymbol{\mu} &= \boldsymbol{\mu}_{e} + \boldsymbol{\mu}_{N} = -e \sum_{i} \boldsymbol{r}_{i} + e \sum_{j} Z_{j} \boldsymbol{R}_{j}. \end{split}$$
The probability amplitude *P* for the transition between these two states is given by
$$P &= \langle \psi' | \boldsymbol{\mu} | \psi \rangle = \int \psi'^{*} \boldsymbol{\mu} \psi \, d\tau, \qquad \psi = \psi_{e} \psi_{v} \psi_{s}.$$

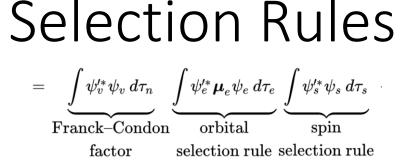
$$P &= \langle \psi'_{e} \psi'_{v} \psi'_{s} | \boldsymbol{\mu} | \psi_{e} \psi_{v} \psi_{s} \rangle = \int \psi'^{*}_{e} \psi'^{*}_{v} \psi'^{*}_{s} (\boldsymbol{\mu}_{e} + \boldsymbol{\mu}_{N}) \psi_{e} \psi_{v} \psi_{s} \, d\tau$$

$$= \int \psi'^{*}_{e} \psi'^{*}_{v} \psi'^{*}_{s} \boldsymbol{\mu}_{e} \psi_{e} \psi_{v} \psi_{s} \, d\tau + \int \psi'^{*}_{e} \psi'^{*}_{v} \psi'^{*}_{s} \boldsymbol{\mu}_{N} \psi_{e} \psi_{v} \psi_{s} \, d\tau$$

$$= \int \psi'^{*}_{v} \psi'^{*}_{v} \psi \, d\tau_{n} \qquad \int \psi'^{*}_{e} \boldsymbol{\mu}_{e} \psi_{e} \, d\tau_{e} \quad \int \psi'^{*}_{e} \psi'^{*}_{s} \psi_{s} \, d\tau_{s} \quad + \int \psi'^{*}_{e} \psi'^{*}_{e} \psi_{e} \, d\tau_{v} \int \psi'^{*}_{s} \psi_{s} \, d\tau_{s} \quad d\tau_{s} \quad + \int \psi'^{*}_{e} \psi_{e} \, d\tau_{e} \quad \int \psi'^{*}_{v} \boldsymbol{\mu}_{N} \psi_{v} \, d\tau_{v} \int \psi'^{*}_{s} \psi_{s} \, d\tau_{s} \quad d\tau_{s}$$



Turro, Chapter 7, Figure 7.12, Page 429



Angular Momentum Quantum NumbersPhoton... which came from matter: $s = 1, m_s = \pm 1$ Electron (Orbital): $l, m_l = [-l, l]$ in steps of 1Electron (Spin): $s = \frac{1}{2}, m_s = \left[-\frac{1}{2}, \frac{1}{2}\right]$

24()

... well these are just overlaps... and so the more overlap, the more favorable a transition...

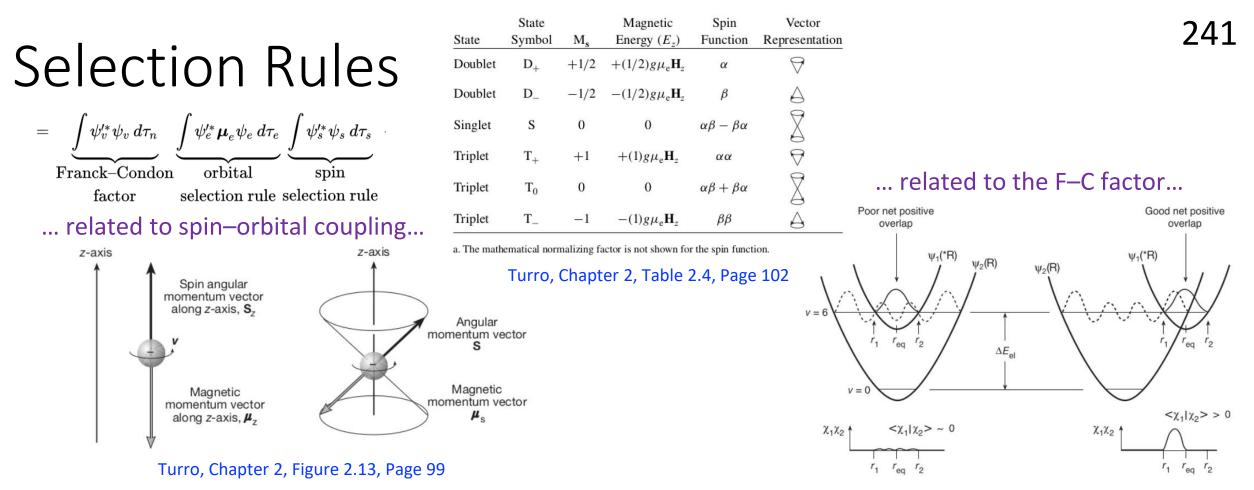
... the F–C factor makes sense based on pictures on previous slides

... but what does μ_e do to a wavefunction?...

... maybe we don't know, but it better change the angular momentum properly for a photon ... and what are spin wavefunctions?... just symbols!... spin does not appear in μ ... it's just math... ... so, the spin wavefunctions only overlap when they are identical... meaning spin does not change

Atomic Selection "rules"

Orbital angular momentum (Laporte "rule"): $\Delta l = \pm 1 \dots$ as $l_f = l_i \pm s_{\text{photon}}$ Spin angular momentum (Wigner "rule"): $\Delta m_s = 0 \dots \mu$ does not act on spin Orbital z-direction angular momentum: $\Delta m_l = 0, \pm 1 \dots$ as $m_{l,f} = m_{l,i} \pm m_{s,\text{photon}}$ \dots the allowed 0 option can be envisioned as two vectors that are opposite in one direction



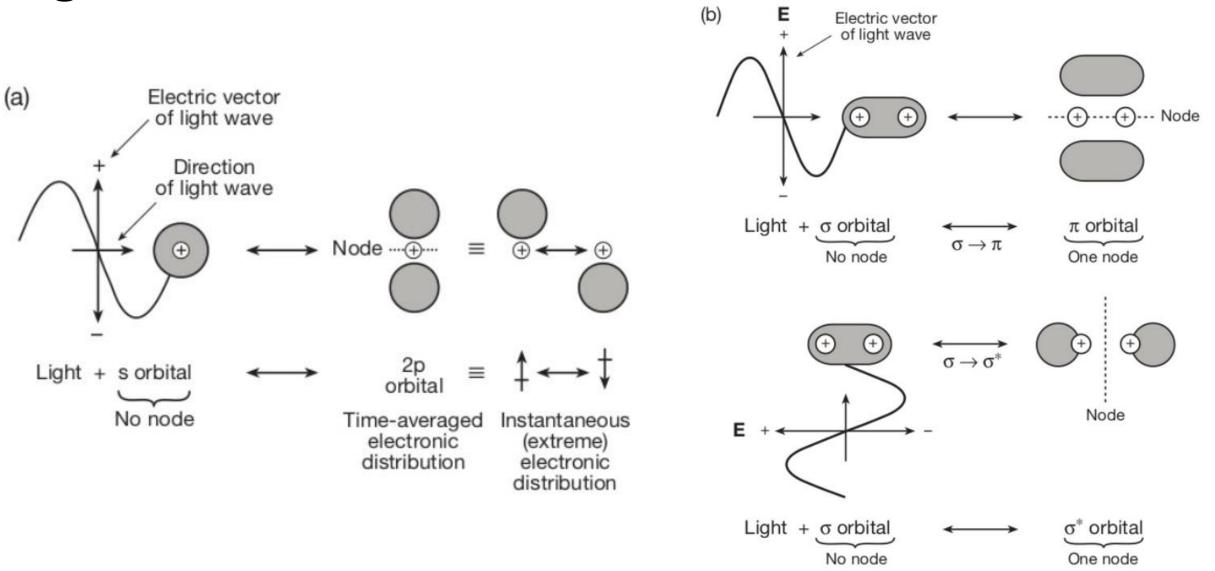
 $\Delta l = \pm 1 \dots \text{ as } l_f = l_i \pm s_{\text{photon}} \dots \Delta m_s = 0 \dots \Delta m_l = 0, \pm 1 \dots \text{ as } m_{l,f} = m_{l,i} \pm m_{s,\text{photon}}$

Summary of Atomic Selection "rules"

<u>Heavy Molecule (Russell–Saunders L–S Coupling) Selection "rules"</u> Total angular momentum: $\Delta J = 0, \pm 1 \dots$ and $\Delta S = 0 \dots$ and $\Delta L = 0, \pm 1$ Total z-direction angular momentum: $\Delta m_J = 0, \pm 1 \dots$ and 0's are there for the same reason

(REVIEW) 242

Light–Matter Interactions



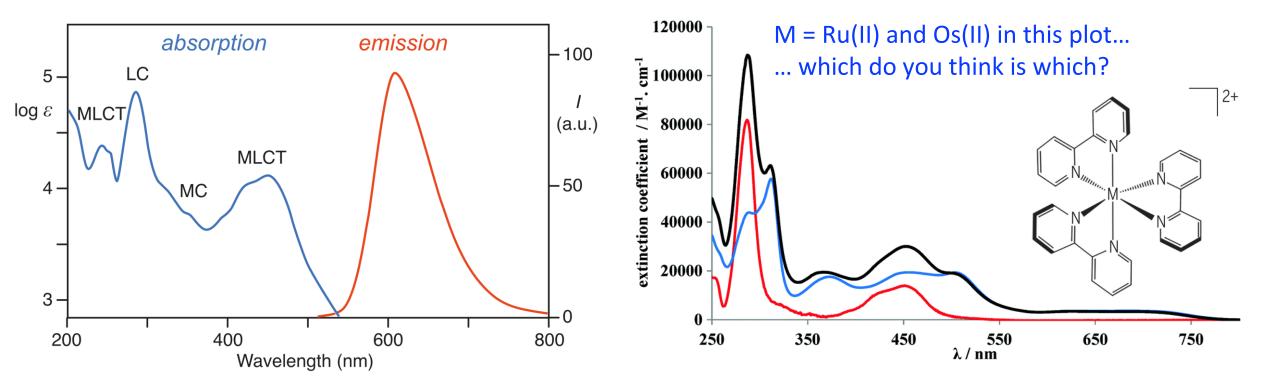
Turro, Chapter 4, Figure 4.6, Page 189

Charge-Transfer Transitions & S–O Coupling

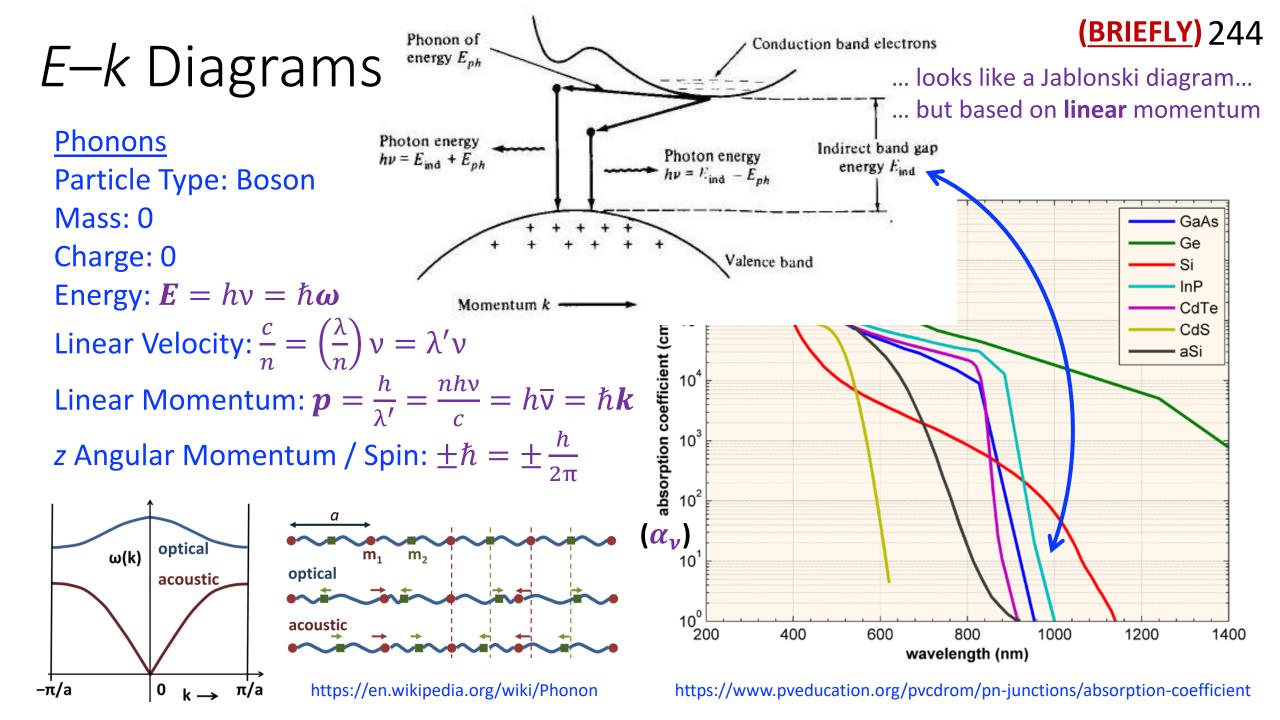
243

The Hamiltonian for spin–orbit (S–O) coupling results in the heavy-atom effect... ... and it also results in variation in the selection rules... $E_{\rm SO} = \mathbf{Z}^4 \alpha^2 h c R_H \left\{ \frac{j(j+1) - l(l+1) - s(s+1)}{2n^3 l \left(l + \frac{1}{2}\right) (l+1)} \right\}$

Total angular momentum: $\Delta I = 0, \pm 1$ Total z-direction angular momentum: $\Delta m_I = 0, \pm 1$



... oh, now I see it in those spectra... and how the black spectrum is when there is a mixture



Absorption Coefficient & Beer–Lambert Law

245

To describe attenuation of light intensity/power through matter due to absorption only... one writes $\frac{\partial I_{\nu}}{\partial z} = -\alpha_{\nu}I_{\nu}...$ where α_{ν} is the linear Napierian absorption coefficient (cm⁻¹) Rearranging to $\frac{\partial I_{\nu}}{I_{\nu}} = -\alpha_{\nu}\partial z$, and integrating from $I_{\nu,\text{front}}$ to $I_{\nu,\text{back}}$ over ℓ leads to... $\ln\left(\frac{I_{\nu,\text{back}}}{I_{\nu,\text{front}}}\right) = -\alpha_{\nu}\ell... \text{ or } I_{\nu} = I_{\nu,0}e^{-\alpha_{\nu}\ell}, \text{ where } I_{\nu} = I_{\nu,\text{back}} \text{ and } I_{\nu,0} = I_{\nu,\text{front}} \xrightarrow{\ell}_{\text{Lakowicz, Chapter 2, Figure 2.52, Page 59}}$... where $T_{\nu} = \frac{I_{\nu}}{I_{\nu,0}}$ (transmittance) and $A_{\nu} = -\log(T_{\nu}) = \log\left(\frac{I_{\nu,0}}{I_{\nu}}\right)$ (absorbance) ... but the **absorption coefficient** can take on many forms/units... sorry... $\log\left(\frac{I_{\nu}}{I_{\nu}}\right) = -a_{\nu}\ell...$ where a_{ν} is the linear decadic **absorption coefficient** (cm⁻¹) [not often used] $\ln\left(\frac{I_{\nu}}{I_{\nu}}\right) = -\kappa_{\nu}c\ell...$ where κ_{ν} is the molar Napierian absorption coefficient (M⁻¹ cm⁻¹) [n. o. u.] ... since M⁻¹ cm⁻¹ = L mol⁻¹ cm⁻¹ = dm³ mol⁻¹ cm⁻¹, $\sigma_{\nu} = \frac{1000\kappa_{\nu}}{N_{\Lambda}}$ is the absorption <u>cross-section</u> (cm²) $\log\left(\frac{I_{\nu}}{I_{\nu}c}\right) = -\varepsilon_{\nu}c\ell...$ where ε_{ν} is the molar decadic absorption coefficient (M⁻¹ cm⁻¹)... finally!... ... leading to the **Beer–Lambert law**... $A_{\nu} = \varepsilon_{\nu} c \ell$... a succinct and well-known equation in the end https://goldbook.iupac.org/terms/view/A00037

Einstein Coefficients & Oscillator Strength

... is the rate constant for emission equal to that of absorption? ... No way! allowed transition

... but Absorption = −Stimulated Emission... but ≠ Spontaneous Emission

Positive Absorption = Stimulated Absorption

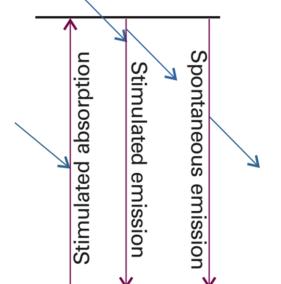
$$\frac{\partial n_1}{\partial t} = A_{21}n_2 \qquad \qquad \frac{\partial n_1}{\partial t}$$

Spontaneous Emission

$$\frac{\partial n_1}{\partial t} = -B_{12}n_1\rho(\nu)$$
Negative Absorption = Stimulated Emission
$$\frac{\partial n_1}{\partial n_1}$$

$$\frac{\partial n_1}{\partial t} = B_{21} n_2 \rho(\nu)$$

Consider all possible reactions to be at equilibrium...



<u>Oscillator strength</u> (f_{12}): integrated strength of

an absorption band relative to a completely

246

Atkins, Chapter 13, Figure 13.5, Page 434

 $\frac{\partial n_1}{\partial t} = -\frac{\partial n_2}{\partial t} = \mathbf{0} = A_{21}n_2 + B_{21}n_2\rho(\nu) - B_{12}n_1\rho(\nu) \dots g_1B_{12} = g_2B_{21} = \frac{g_1c\sigma_{12}}{h\nu} = \frac{g_1e^2f_{12}}{4\varepsilon_0m_eh\nu}$... where $\rho(\nu)$ is an irradiance... in units of energy per volume per frequency, ν R. C. Hilborn, Am. J. Phys., **1982**, 50, 982–986 ... $A_{21} = \frac{8\pi h\nu^3}{c^3}B_{21} = \frac{16\pi^3\nu^3\mu_{21}^2}{3\varepsilon_0hc^3}$

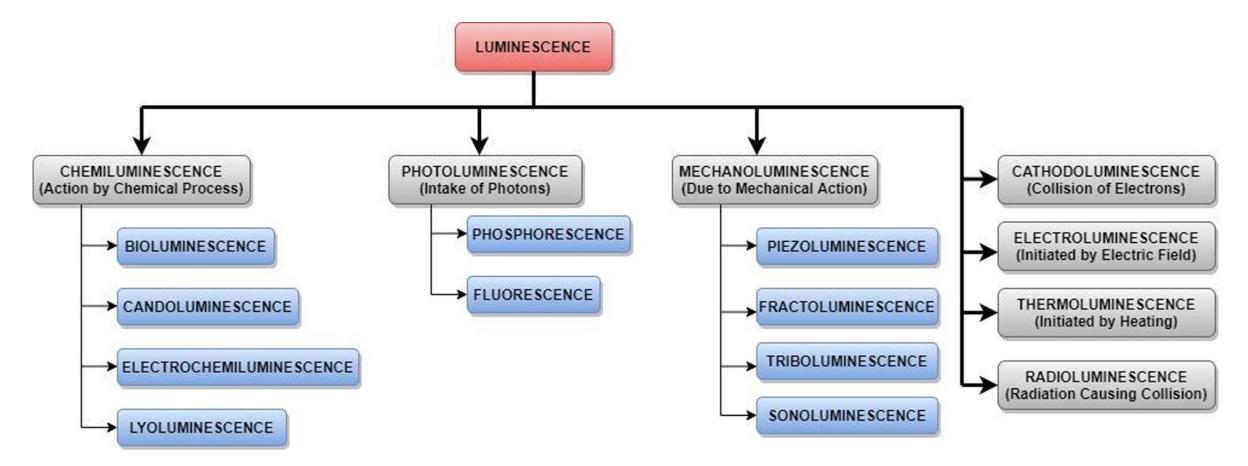
Today's Critical Guiding Question

What continuity/conservation laws are most important for photophysical processes like absorption and emission of photons... <u>for real this time, again: Part 4</u>?

DISCUSSION SESSION TOPICS

Luminescence Processes

... Photo... and Chemi... and Mechano... Oh My!

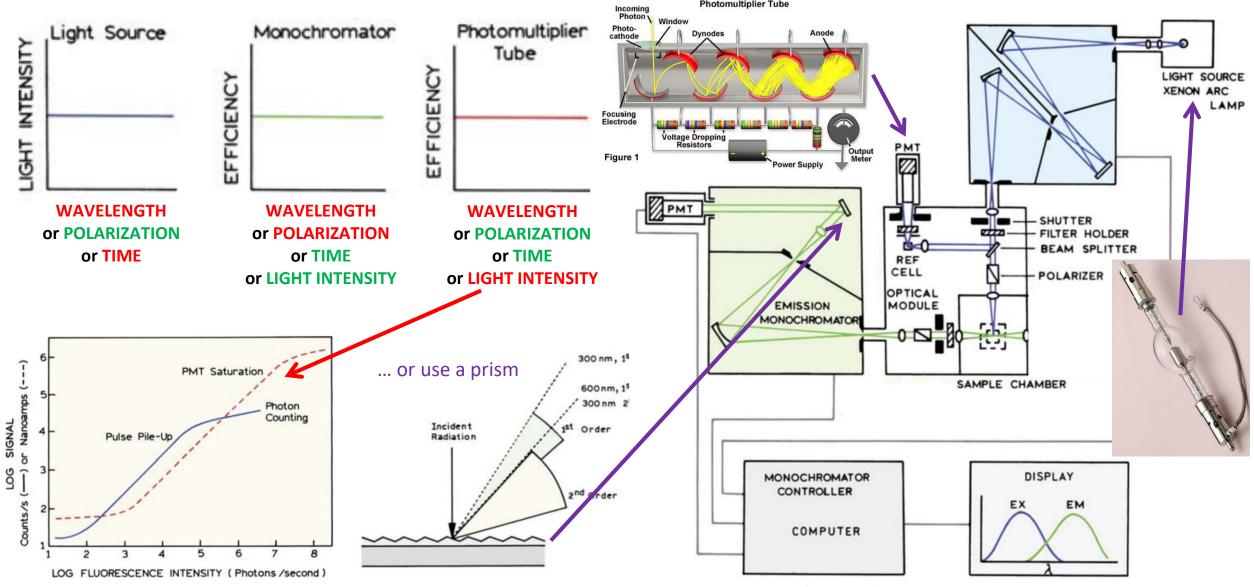


https://www.sciencedirect.com/science/article/pii/S2214785321017272

... well I guess it makes sense... it's just conservation of energy... and momentum, of course...

https://micro.magnet.fsu.edu/primer/digitalimaging/concepts/photomultipliers.html

Photoluminescence Spectrometer

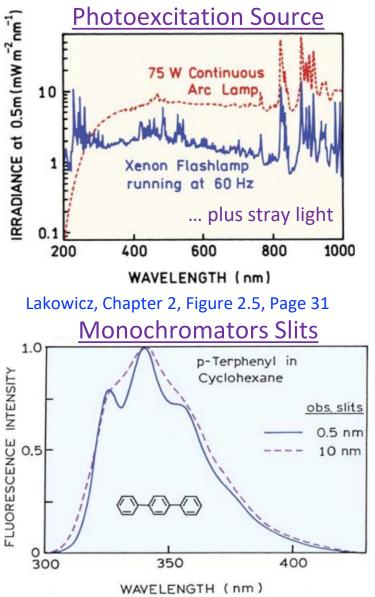


Lakowicz, Chapter 2, Figure 2.36, Page 48

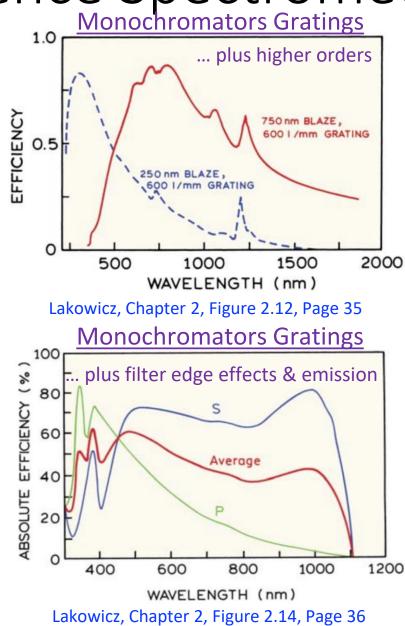
Lakowicz, Chapter 2, Figure 2.16, Page 37

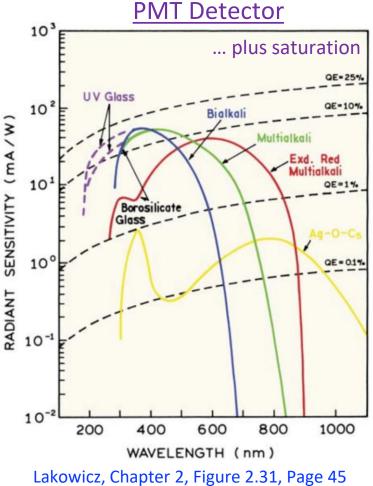
Lakowicz, Chapter 2, Figure 2.1, Page 28

Photoluminescence Spectrometer



Lakowicz, Chapter 2, Figure 2.13, Page 35





... measured PL spectra are effectively multiplied by all of these!... Ugh!