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Today’s Critical Guiding Question

What continuity/conservation laws are most important for
photophysical processes like absorption and emission of photons...
for real this time, again: Part 5?7
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Photophysical Processes

* Blackbody radiation, Photon properties, Light—Matter interactions,
Conservation laws, Einstein coefficients

* Jablonski diagram, Spin multiplicity, Internal conversion, Intersystem
crossing, Thexi state, Kasha—Vavilov rule, Stokes shift, PL

* Born—Oppenheimer approximation, Franck—Condon principle,
Transition dipole moment operator, Franck—Condon factors, Beer—
Lambert law, Absorption coefficient, Oscillator strength, Absorptance

* Luminescence processes, Selection rules, Charge-transfer transitions,
Spin—=0rbit coupling, Heavy-atom effect, E=k diagrams, Jortner energy
gap law, Conical intersections, Energy transfer, Exciplex/Excimer

* Photoluminescence spectrometer, Emission/Excitation spectra, Inner
filter effects, Anisotropy, Excited-state lifetime, Emission quantum yield
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Absorption Coefficient & Beer—Lambert Law

To describe attenuation of light intensity/power through matter due to absorption only... one writes

ol . : o : .. =
a—;’ = —a,l,... where a, is the linear Napierian absorption coefficient (cm) e
o I I
: G| : : ) ——
Rearranging to I—V = —a,,0z, and integrating from [, .ont 0 [, pack over £ leads to... X
v (!
Iv,back _ _ - *f o . 1€1
v.front I I Lakowicz, Chapter 2, Figure 2.52, Page 59
.. where T, = I—V (transmittance) and A, = —log(T,) = log (%) (absorbance)
v,0 v
... but the absorption coefficient can take on many forms/units... sorry...
I : : : : ..
log (I—") = —a,f... where a,, is the linear decadic absorption coefficient (cm) [not often used]
v,0
I : . : ..
In (—") = —k, c?... where k,, is the molar Napierian absorption coefficient (M cm?) [n. 0. u.]
V,0
, 1000k, . : :
.. since Mtcm?t=Lmoltcm?t=dm3 moltcmd, o, = > ™ is the absorption cross-section (cm?)
A
I : : : .. :
log (I—") = —g,cf... where g, is the molar decadic absorption coefficient (M cm)... finally!...
V,0

... leading to the Beer—-Lambert law... A, = &,,cf... a succinct and well-known equation in the end
https://goldbook.iupac.org/terms/view/A00037
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Einstein Coefficients & Oscillator Strength

Oscillator strength (f12): integrated strength of
an absorption band relative to a completely

... is the rate constant for emission equal to that of absorption? ... No way! allowed transition

... but Absorption = =Stimulated Emission... but # Spontaneous Emission A\
Spontaneous Emission  Positive Absorption = Stimulated Absorption - \k %
aon, A an, o ) 8 3 >
— = AN, 5, — D12 pV 2 g 3
ot ot g £ B i
- |2 S
Negative Absorption = Stimulated Emission = ‘3" %
on, 2 B z
—— = By1n,p(v) g 5 ¢
ot vV
Consider all possible reactions to be at equilibrium... Atkins, Chapter 13, Figure 13.5, Page 434
onq an, 9g1€012 g1e°f12
— =———=0=A4y1n B, in,p(v) — Bionp(v)... g1B1o = g-,Boq = =
ot ot 2112 + Ba1n2p(v) — B1anyp(v)... 91B12 = g2B21 PR y——
... where p(v) is an irradiance... in units of energy per volume per frequency, v 8tthy3 16”31/3”%1

R. C. Hilborn, Am. J. Phys., 1982, 50, 982-986 ... A21 —

3
R. C. Hilborn, arXiv:physics/0202029 3eohc
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e ... looks like a Jablonski diagram...
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https://www.pveducation.org/pvcdrom/pn-junctions/absorption-coefficient



Absorption Coefficient
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... what is the name of each absorption coefficient?... and how do we compare them?
... well, what is the concentration in a metal?... Maybe 1 M-ish?
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Absorption vs Absorbance vs Absorptance

... let’s use each in a sentence, okay?
... For example, "I do not understand the difference between A., A., and A.?"... Ha! j/k

... 'This plot displays an absorption spectrum"

H'g 100 Al i iR ! ... "The ordinate is often absorbance, which is

i’ i Q dimensionless... and definitely not “a.u.””

e 8or 3 .. "Absorbance, 4, is directly related to

o Soret band 0 concentration... and so its range is [0, o°)"

f\—i O (5>5) § ... "Absorptance, «, is the fraction (or percentage)

%‘ 40 5 of light absorbed... it goes well with T (or %T)"

I = ... "Photochemists must know concentrations (via

% 20| g Abs, A) and amount of light absorbed (as Abt, a)"

% ; _ \ : " 7 assuming %R, ; = 0, %A, = 100% — %T, ~

= 300 450 600 750 | Mv _ 4 _ 10=5? — g (dimensionless) %R, = <n2 n1>
(£)) Wavelength (nm) HOUTo n; +ny

_ -y
a=1=10"" %7, = (100% — %Ry front) 10" — %R, back
%T, = (100% - %Rv,front)e_av{) - %Rv,back
... and based on the Fresnel equations, for light with normal incidence... %4, + %T,, + %R, ota1 = 100%

https://www.sciencedirect.com/science/article/pii/S0009261417301756
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uang—Rhys Factor

Marcus—Hush (1950s—1960s) Fermi’s Golden Rule
theoretical (semiclassical) rate constant equation time-dependent perturbation theory
+ With one coupled medium- or high-frequency mode
. 2T 2 AGAB (or averaged mode), only the v = 0 vibrational level
kET — 7 |H D Al \/4 A kT exp\| — T is appreciably populated at room temperature (hw >
n AB 1(]37-), and8,43,112,115,131
_ 27 HDAZ

sY
= Vn(r) Kel(r)xn (?‘) kgr = " W;exp(ﬂs) EGXP[—[(AG" +
vhwo + 1,)%/41 RT]] (25)

27 ' T 2/ .7 2
T ?@/) el| H | l/)el> <wvib | I/Jvib> 0 (E B E) In this limit the coupled vibration does not contribute
to the temperature dependence since the only con-

... separable due to the Born—Oppenheimer approximation  tributing reaction channels originate from v = 0.

If hw;> kg T, only v; = 0 is appreciably populated S is the electron-vibrational coupling constant, or
Huang—Rhys factor:%1%

and
’ Mo
2 S/ S; = %(—;l J)(AQBJ)Z (19)
<X13’|X5:0) = exp(_‘s}) v/l (22)
J’ M,; is the reduced mass. The physical significance of

the vibrational overlap integrals is that they give the
extent to which the final and initial states coincide

P. Chen & T. J. Meyer, Chem. Rev., 1998, 98, 14391477 along the normal coordinate. N. Sutin, Acc. Chem. Res., 1982, 15, 275-282



Jortner Energy Gap Law

Jortner Energy Gap Law (1960s—1970s)

theoretical non-radiative rate constant equation

_ C%/(2m)
W = i (homAE)

exp (— yAE/hwar)
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Fermi’s Golden Rule

time-dependent perturbation theory

With one coupled medium- or high-frequency mode
(or averaged mode), only the v = 0 vibrational level
is appreciably populated at room temperature (hw >
kBT)’ and8,43,112,115,131

Energy gap law data in condensed phase
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Rare in rare earth ions, LaCl,

_ 27 HDAZ

SV
== —9) ~exp|—[(AG® +
h (4n/10R7)1’2V9Xp( 9 t/!eXp[ I

kgt
vhwo + 1,)%/41 RT]] (25)
In this limit the coupled vibration does not contribute

to the temperature dependence since the only con-
tributing reaction channels originate from v = 0.

... also due to weak coupling...
... in the low-temperature limit

https://i.stack.imgur.com/NG6Lt.png

. Englman & J. Jortner, Mol. Phys., 1970, 18, 145-164

N. Sutin, Acc. Chem. Res., 1982, 15, 275-282
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Conical Intersection Curve Crossing

Jortner Energy Gap Law (1960s—1970s) Conical Intersection
theoretical non-radiative rate constant equation breakdown of the B—O approximation
2 a X ranching space X ranching space
W C24/(2m) exp (— yAE /o) (a) Rx C branching sp (b) Rx L branching sp

‘sand in the funnel’ conical intersection seam

~ h/(hwyAE)

weak coupling strong coupling

Energy

Reaction path

https://tel.archives-ouvertes.fr/tel-01184241/file/hdr_boggio final.pdf

... a conical intersection leads to rapid excited-state deactivation... on the timescale of a bond vibration

... diatomic species with Amg; = 0 obey the non-crossing "rule"... where Hpa # 0, and Jortner is relevant
R. Englman & J. Jortner, Mol. Phys., 1970, 18, 145-164
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Luminescence Processes

... Photo... and Chemi... and Mechano... Oh My!

v v v

| CATHODOLUMINESCENCE

CHEMILUMINESCENCE PHOTOLUMINE SCENCE MECHANOLUMINE SCENCE >
(Action by Chemical Process) ~ (Intake of Photons) (Due to Mechanical Action) | (Coliision of Electrons)
l’ \ PHOSPHORESCENCE : | ( Y
FLUORESCENCE ‘ f )
—>‘ CANDOLUMINESCENCE ' bbb ealohadenl _,IFRAcrowumescsuce |y, THERMOLUMINESCENCE
~(Initiated by Heating)
ELECIROCHEMILL N SCENCE 5| _ RADIOLUMINESCENCE

(Radiation Causing Collision)

SONOLUMINESCENCE

LYOLUMINESCENCE

https://www.sciencedirect.com/science/article/pii/$2214785321017272

... well | guess it makes sense... it’s just conservation of energy... and momentum, of course...
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Lakowicz, Chapter 2, Figure 2.36, Page 48
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Lakowicz, Chapter 2, Figure 2.13, Page 35
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hotoluminescence Spectrometer
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Lakowicz, Chapter 2, Figure 2.31, Page 45

... measured PL spectra are
effectively multiplied by all
of thesel... Ugh!



Spectra
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Multi(n)-photon excitation (nPE)

¥ vary with Ag

.. constant AE from Aoz

Trp in Buffer,
pH 7.0,20°C

[(Trpl=0.8 uM

Emission & Excitatior
& 10 \ Fluorescein in |, o 1.0
g \ 0.05N NaOH '

m 3 | d
z Emission .

w ,*X\L 22; 0.5+
i oS fos g
s & y <

3

= 0
m 0,/ L 1 L L 0

x 420 460 500

WAVELENGTH ( nm)
Lakowicz, Chapter 2, Figure 2.6, Page 31
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.. why is emission cut-off?

Photoluminescence intensity (PLI)

requires A-dependent correction factors...
... which differs from absorbance, where
division cancels out all these issues

Abs,,

v

.. in this other plot, it is not...
... what causes those peaks?
.Note: I(v) = A*I(L)

I
—1log(T,) = log (%) =g,cf PLIL, =1I,, X Abt, X QYem X 1_[

Lakowicz, Chapter 2, Figure 2.26, Page 42
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J B. Kierdaszuk, J. Fluorescence, 2013, 23, 339-347
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Today’s Critical Guiding Question

What continuity/conservation laws are most important for
photophysical processes like absorption and emission of photons...
for real this time, again: Part 5?7




. 274
Photophysical Processes

* Blackbody radiation, Photon properties, Light—Matter interactions,
Conservation laws, Einstein coefficients

* Jablonski diagram, Spin multiplicity, Internal conversion, Intersystem
crossing, Thexi state, Kasha—Vavilov rule, Stokes shift, PL

* Born—Oppenheimer approximation, Franck—Condon principle,
Transition dipole moment operator, Franck—Condon factors, Beer—
Lambert law, Absorption coefficient, Oscillator strength, Absorptance

* Luminescence processes, Selection rules, Charge-transfer transitions,
Spin—Orbit coupling, Heavy-atom effect, E—k diagrams, Jortner energy
gap law, Conical intersections, Energy transfer, Exciplex/Excimer

* Photoluminescence spectrometer, Emission/Excitation spectra, Inner
filter effects, Anisotropy, Excited-state lifetime, Emission quantum yield
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