Lecture \#11 of 12

Prof. Shane Ardo
Department of Chemistry
University of California Irvine

Photophysical Processes

Prof. Shane Ardo
Department of Chemistry
University of California Irvine

Today’s Critical Guiding Question

What continuity/conservation laws are most important for photophysical processes like absorption and emission of photons... for real this time, again: Part 5?

Photophysical Processes

- Blackbody radiation, Photon properties, Light-Matter interactions, Conservation laws, Einstein coefficients
- Jablonski diagram, Spin multiplicity, Internal conversion, Intersystem crossing, Thexi state, Kasha-Vavilov rule, Stokes shift, PL
- Born-Oppenheimer approximation, Franck-Condon principle, Transition dipole moment operator, Franck-Condon factors, BeerLambert law, Absorption coefficient, Oscillator strength, Absorptance
- Luminescence processes, Selection rules, Charge-transfer transitions, Spin-Orbit coupling, Heavy-atom effect, E-k diagrams, Jortner energy gap law, Conical intersections, Energy transfer, Exciplex/Excimer
- Photoluminescence spectrometer, Emission/Excitation spectra, Inner filter effects, Anisotropy, Excited-state lifetime, Emission quantum yield

Absorption Coefficient \& Beer-Lambert Law

To describe attenuation of light intensity/power through matter due to absorption only... one writes $\frac{\partial I_{v}}{\partial z}=-\alpha_{v} I_{v} \ldots$ where α_{v} is the linear Napierian absorption coefficient (cm^{-1}) Rearranging to $\frac{\partial I_{v}}{I_{v}}=-\alpha_{v} \partial z$, and integrating from $I_{\nu, \text { front }}$ to $I_{\nu, \text { back }}$ over ℓ leads to...

$$
\ln \left(\frac{I_{v, \text { back }}}{I_{v, \text { front }}}\right)=-\alpha_{v} \ell \ldots \text { or } I_{v}=I_{v, \mathrm{o}} e^{-\alpha_{v} \ell}, \text { where } I_{v}=I_{v, \text { back }} \text { and } I_{v, \mathrm{o}}=I_{v, \text { front }}
$$

\ldots where $T_{v}=\frac{I_{v}}{I_{v, 0}}$ (transmittance) and $A_{v}=-\log \left(T_{v}\right)=\log \left(\frac{I_{v, 0}}{I_{v}}\right)$ (absorbance)
... but the absorption coefficient can take on many forms/units... sorry...
$\log \left(\frac{I_{v}}{I_{v, \mathrm{o}}}\right)=-a_{v} \ell \ldots$ where a_{v} is the linear decadic absorption coefficient (cm^{-1}) [not often used] $\ln \left(\frac{I_{v}}{I_{v, \mathrm{o}}}\right)=-\kappa_{v} c l \ldots$ where κ_{v} is the molar Napierian absorption coefficient $\left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ [n. o. u.] \ldots since $\mathrm{M}^{-1} \mathrm{~cm}^{-1}=\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}=\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}, \sigma_{v}=\frac{1000 \kappa_{v}}{N_{\mathrm{A}}}$ is the absorption cross-section (cm^{2}) $\log \left(\frac{I_{v}}{I_{v, \mathrm{o}}}\right)=-\varepsilon_{v} c \ell \ldots$ where ε_{v} is the molar decadic absorption coefficient $\left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) \ldots$ finally!... ... leading to the Beer-Lambert law... $A_{v}=\varepsilon_{v} \subset \ell \ldots$ a succinct and well-known equation in the end

Einstein Coefficients \& Oscillator Strength

Oscillator strength $\left(f_{12}\right)$: integrated strength of an absorption band relative to a completely ... is the rate constant for emission equal to that of absorption? ... No way! allowed transition ... but Absorption = -Stimulated Emission... but \neq Spontaneous Emission Spontaneous Emission $\frac{\partial n_{1}}{\partial t}=A_{21} n_{2}$ Positive Absorption = Stimulated Absorption

$$
\frac{\partial n_{1}}{\partial t}=-\boldsymbol{B}_{12} n_{1} \rho(v)
$$

Negative Absorption = Stimulated Emission

$$
\frac{\partial n_{1}}{\partial t}=B_{21} n_{2} \rho(v)
$$

Consider all possible reactions to be at equilibrium...
Atkins, Chapter 13, Figure 13.5, Page 434

$$
\frac{\partial n_{1}}{\partial t}=-\frac{\partial n_{2}}{\partial t}=0=\boldsymbol{A}_{21} n_{2}+\boldsymbol{B}_{21} n_{2} \rho(v)-\boldsymbol{B}_{12} n_{1} \rho(v) \ldots g_{1} \boldsymbol{B}_{12}=g_{2} \boldsymbol{B}_{21}=\frac{g_{1} c \sigma_{12}}{h v}=\frac{g_{1} e^{2} \boldsymbol{f}_{12}}{4 \varepsilon_{0} m_{e} h v}
$$

... where $\rho(v)$ is an irradiance... in units of energy per volume per frequency, v
R. C. Hilborn, Am. J. Phys., 1982, 50, 982-986
R. C. Hilborn, arXiv:physics/0202029

$$
\boldsymbol{A}_{21}=\frac{8 \pi h v^{3}}{c^{3}} \boldsymbol{B}_{21}=\frac{16 \pi^{3} v^{3} \mu_{21}^{2}}{3 \varepsilon_{\mathbf{0}} h c^{3}}
$$

E-k Diagrams

(BRIEFLY; REVIEW) 263

Phonons

Particle Type: Boson
Mass: 0
Charge: 0
Energy: $\boldsymbol{E}=h \nu=\hbar \boldsymbol{\omega}$... looks like a Jablonski diagram... Linear Velocity: $\frac{c}{n}=\left(\frac{\lambda}{n}\right) v=\lambda^{\prime} v$
Linear Momentum: $\boldsymbol{p}=\frac{h}{\lambda^{\prime}}=\frac{n h v}{c}=h \bar{v}=\hbar \boldsymbol{k}$
z Angular Momentum / Spin: $\pm \hbar= \pm \frac{h}{2 \pi}$

https://en.wikipedia.org/wiki/Phonon

Absorption Coefficient

... what is the name of each absorption coefficient?... and how do we compare them?
... well, what is the concentration in a metal?... Maybe 1 M-ish?

[^0]

Absorption vs Absorbance vs Absorptance

... let's use each in a sentence, okay?
... For example, "I do not understand the difference between A., A., and A.?"... Ha! j/k

https://www.sciencedirect.com/science/article/pii/S0009261417301756
... "This plot displays an absorption spectrum" ... "The ordinate is often absorbance, which is dimensionless... and definitely not "a.u."" ... "Absorbance, A, is directly related to concentration... and so its range is $[0, \infty)$ "
... "Absorptance, α, is the fraction (or percentage) of light absorbed... it goes well with T (or \%T)"
... "Photochemists must know concentrations (via Abs, A) and amount of light absorbed (as Abt, α)"

$$
\text { assuming } \% R_{v, i}=0, \% A_{v}=100 \%-\% T_{v}
$$

$$
\cdot \frac{\frac{\text { assuming } ~}{\%} \text { o } R_{v, i}=0, \% A_{v}=100 \%-\% I_{v}}{100 \%}=1-10^{-\varepsilon_{v} c l}=\alpha \text { (dimensionless) } \quad \% \boldsymbol{R}_{v}=\left(\frac{\boldsymbol{n}_{\mathbf{2}}-\boldsymbol{n}_{\mathbf{1}}}{\boldsymbol{n}_{\mathbf{2}}+\boldsymbol{n}_{\mathbf{1}}}\right)^{2}
$$

$$
\ldots \alpha=\mathbf{1}-\mathbf{1 0} 0^{-A} \quad \% T_{v}=\left(100 \%-\% R_{v, \text { front }}\right) 10^{-\varepsilon_{v} c \ell}-\% R_{v, \text { back }}
$$

$$
\% T_{v}=\left(100 \%-\% R_{v, \text { front }}\right) e^{-\alpha_{v} \ell}-\% R_{v, \text { back }}
$$

. and based on the Fresnel equations, for light with normal incidence... $\% A_{v}+\% T_{v}+\% R_{v, \text { total }}=100 \%$

Huang-Rhys Factor

(REVIEW) 266

Marcus-Hush (1950s-1960s)

theoretical (semiclassical) rate constant equation

$$
\begin{aligned}
\boldsymbol{k}_{\mathrm{ET}} & =\frac{2 \pi}{\hbar}\left|\boldsymbol{H}_{\mathrm{DA}}\right|^{2} \frac{1}{\sqrt{4 \pi \lambda_{\mathrm{AB}} k T}} \exp \left(-\frac{\Delta \boldsymbol{G}_{\mathrm{AB}}^{\neq}}{\boldsymbol{k T}}\right) \\
& =\nu_{\mathrm{n}}(r) \kappa_{\mathrm{el}}(r) \kappa_{\mathrm{n}}(r) \\
& =\frac{2 \pi}{\hbar}\left\langle\psi_{\mathrm{el}}^{\prime}\right| \hat{H}\left|\psi_{\mathrm{el}}\right\rangle^{2}\left\langle\psi_{\text {vib }}^{\prime} \mid \psi_{\text {vib }}\right\rangle^{2} \delta(E-E) \\
& \text {... separable due to the Born-Oppenheimer approximation }
\end{aligned}
$$

Fermi's Golden Rule

time-dependent perturbation theory

With one coupled medium- or high-frequency mode (or averaged mode), only the $v=0$ vibrational level is appreciably populated at room temperature ($\hbar \omega \gg$ $k_{\mathrm{B}} T$, and 8,43,112,115,131

$$
\begin{array}{r}
k_{\mathrm{ET}}=\frac{2 \pi}{\hbar} \frac{H_{\mathrm{DA}}{ }^{2}}{\left(4 \pi \lambda_{0} R T\right)^{1 / 2}} \sum_{V} \exp (-S) \frac{S^{V}}{V!} \exp \left[-\left[\left(\Delta G^{\circ}+\right.\right.\right. \\
\left.\left.\left.V \hbar \omega+\lambda_{0}\right)^{2} / 4 \lambda_{0} R T\right]\right]
\end{array}
$$

In this limit the coupled vibration does not contribute to the temperature dependence since the only contributing reaction channels originate from $v=0$.

If $\hbar \omega_{j} \gg k_{\mathrm{B}} T$, only $v_{j}=0$ is appreciably populated and

$$
\begin{equation*}
\left\langle\chi_{v_{j}^{\prime}} \mid \chi_{v_{j}=0}\right\rangle^{2}=\exp \left(-S_{j}\right) \frac{S_{j}^{V_{j}^{\prime}}}{v_{j}^{\prime}!} \tag{22}
\end{equation*}
$$

S_{j} is the electron-vibrational coupling constant, or Huang-Rhys factor: ${ }^{99,105}$

$$
\begin{equation*}
S_{j}=\frac{1}{2}\left(\frac{M_{j} \omega_{j}}{\hbar}\right)\left(\Delta Q_{\mathrm{e}, j}\right)^{2} \tag{19}
\end{equation*}
$$

M_{j} is the reduced mass. The physical significance of the vibrational overlap integrals is that they give the extent to which the final and initial states coincide along the normal coordinate.
N. Sutin, Acc. Chem. Res., 1982, 15, 275-282

Jortner Energy Gap Law

Jortner Energy Gap Law (1960s-1970s)
theoretical non-radiative rate constant equation

$$
W=\frac{C^{2} \sqrt{ }(2 \pi)}{\hbar \sqrt{ }\left(\hbar \omega_{M} \Delta E\right)} \exp \left(-\gamma \Delta E / \hbar \omega_{M}\right)
$$

Fermi's Golden Rule

time-dependent perturbation theory

With one coupled medium- or high-frequency mode (or averaged mode), only the $v=0$ vibrational level is appreciably populated at room temperature ($\hbar \omega \gg$ $k_{\mathrm{B}} T$, and 8,43,112,115,131

$$
\begin{array}{r}
k_{\mathrm{ET}}=\frac{2 \pi}{\hbar} \frac{H_{\mathrm{DA}}^{2}}{\left(4 \pi \lambda_{0} R T\right)^{1 / 2}} \sum_{V} \exp (-S) \frac{S^{V}}{V!} \exp \left[-\left[\left(\Delta G^{\circ}+\right.\right.\right. \\
\left.\left.\left.V \hbar \omega+\lambda_{0}\right)^{2} / 4 \lambda_{0} R T\right]\right]
\end{array}
$$

In this limit the coupled vibration does not contribute to the temperature dependence since the only contributing reaction channels originate from $v=0$.
... also due to weak coupling...
... in the low-temperature limit

Conical Intersection Curve Crossing

Jortner Energy Gap Law (1960s-1970s)
theoretical non-radiative rate constant equation

Conical Intersection

breakdown of the $\mathrm{B}-\mathrm{O}$ approximation

$$
W=\frac{C^{2} \sqrt{ }(2 \pi)}{\hbar \sqrt{ }\left(\hbar \omega_{M} \Delta E\right)} \exp \left(-\gamma \Delta E / \hbar \omega_{M}\right)
$$

weak coupling

strong coupling

(a)

$\mathrm{Rx} \subset$ branching space
'sand in the funnel'
(b) $\mathrm{Rx} \perp$ branching space conical intersection seam

https://tel.archives-ouvertes.fr/tel-01184241/file/hdr_boggio_final.pdf
... a conical intersection leads to rapid excited-state deactivation... on the timescale of a bond vibration
... diatomic species with $\Delta m_{s}=0$ obey the non-crossing "rule"... where $H_{\mathrm{DA}} \neq 0$, and Jortner is relevant

Luminescence Processes

... Photo... and Chemi... and Mechano... Oh My!

https://www.sciencedirect.com/science/article/pii/S2214785321017272
... well I guess it makes sense... it's just conservation of energy... and momentum, of course...

Photoluminescence Spectrometer

(REVIEW) 270

Photoluminescence Spectrometer

(REVIEW) 271

Lakowicz, Chapter 2, Figure 2.5, Page 31

Lakowicz, Chapter 2, Figure 2.13, Page 35

Lakowicz, Chapter 2, Figure 2.12, Page 35

Lakowicz, Chapter 2, Figure 2.14, Page 36

PMT Detector

Lakowicz, Chapter 2, Figure 2.31, Page 45
... measured PL spectra are effectively multiplied by all of these!... Ugh!

Emission \& Excitation Spectra

Multi(n)-photon excitation (nPE)

Photoluminescence intensity (PLI) requires λ-dependent correction factors... ... which differs from absorbance, where division cancels out all these issues
... why is emission cut-off?
Lakowicz, Chapter 2, Figure 2.26, Page 42

$$
\operatorname{Abs}_{v}=-\log \left(T_{v}\right)=\log \left(\frac{I_{v, \mathrm{o}}}{I_{v}}\right)=\varepsilon_{\nu} c \ell
$$

- ... in this other plot, it is not. ... what causes those peaks?
... Note: $I(\bar{v})=\lambda^{2} I(\lambda)$

Lakowicz, Chapter 1, Figure 1.29, Page 21

Today’s Critical Guiding Question

What continuity/conservation laws are most important for photophysical processes like absorption and emission of photons... for real this time, again: Part 5?

Photophysical Processes

- Blackbody radiation, Photon properties, Light-Matter interactions, Conservation laws, Einstein coefficients
- Jablonski diagram, Spin multiplicity, Internal conversion, Intersystem crossing, Thexi state, Kasha-Vavilov rule, Stokes shift, PL
- Born-Oppenheimer approximation, Franck-Condon principle, Transition dipole moment operator, Franck-Condon factors, BeerLambert law, Absorption coefficient, Oscillator strength, Absorptance
- Luminescence processes, Selection rules, Charge-transfer transitions, Spin-Orbit coupling, Heavy-atom effect, E-k diagrams, Jortner energy gap law, Conical intersections, Energy transfer, Exciplex/Excimer
- Photoluminescence spectrometer, Emission/Excitation spectra, Inner filter effects, Anisotropy, Excited-state lifetime, Emission quantum yield

[^0]: https://www.sciencedirect.com/science/article/pii/S0009261417301756

