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Why semilocal functionals work: Accuracy of the on-top pair density
and importance of system averaging
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Gradient-corrected density functionals provide a common tool for electronic structure calculations
in quantum chemistry and condensed matter physics. This article explains why local and semilocal
approximations work for the exchange-correlation energy. We demonstrate the high accuracy of the
local spin-density~LSD! approximation for the on-top pair density, which provides the missing link
between real atoms and molecules and the uniform electron gas. Special attention is devoted to the
leading correction to exchange in the high-density~or weakly correlated! limit. We give an
improved analytic expression for the on-top pair density in the uniform electron gas, calculating its
spin-polarization dependence exactly in the high-density limit. We find the exact form of the
gradient expansion for the on-top pair density, using Levy’s scaling of the interacting wave function.
We also discuss the importance of system averaging, which unweights spatial regions where the
density varies most rapidly. We show how the depth of the on-top hole correlates with the degree
of locality of the exchange-correlation energy. Finally, we discuss how well fully nonlocal
approximations~weighted-density, self-interaction correction, and hybrid-exchange! reproduce the
on-top hole. ©1998 American Institute of Physics.@S0021-9606~98!30534-6#
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I. INTRODUCTION

A fundamental aim of electronic structure theory is
find the ground-state energyE of N electrons in an externa
potential. Traditional quantum chemical methods directly
proximate the wave function.1 Kohn–Sham spin-density
functional theory provides an alternative language,2,3 in
which a self-consistent solution of a one-electron Sch¨-
dinger equation yields bothE and the electron spin-densitie
n↑(r ) and n↓(r ). Kohn–Sham theory is exact in principle4

but in practice the exchange-correlation energy as a fu
tional of the spin densitiesEXC@n↑ ,n↓# must be approxi-
mated. For many years, the local spin-density~LSD!
approximation4,5 has been popular with solid-sta
physicists,6 but not with quantum chemists. This nonempi
cal theory achieves a remarkable moderate accuracy fo
most all systems,6 but that level of accuracy is insufficien
for the reliable prediction of atomization energies and he
of reaction.7,8 Recent semilocal functionals~also called gen-
eralized gradient approximations, GGA’s!9–23 have suffi-
ciently improved this accuracy to make Kohn–Sham the
popular in quantum chemistry as a reliable, inexpensive
ternative to traditional methods. Simple physic
explanations22 have been given for the character, origins, a
consequences of GGA nonlocality. In this paper, we exp
why LSD is so reliable, and how this reliability carries ov
to more accurate functionals such as GGA’s.

The local spin-density~LSD! approximation toExc is

EXC
LSD@n↑ ,n↓#5E d3rn~r !eXC

unif@n↑~r !,n↓~r !#, ~1!

where eXC
unif(n↑ ,n↓) is the accurately known24–26 exchange-
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correlation energy per electron of the uniform electron g
LSD is exact for an electron gas of uniform spin densit
and is highly accurate for systems of slowly varying den
ties. LSD may be considered the zeroth order term in
expansion in gradients of the density, and much effort
been expended in the calculation of the leading grad
corrections.27–30Inclusion of these corrections yields the gr
dient expansion approximation~GEA!,

EXC
GEA@n↑ ,n↓#5EXC

LSD@n↑ ,n↓#1(
ss8

E d3r

3Css8@n↑~r !,n↓~r !#
¹ns

ns
2/3 •

¹ns8

ns8
2/3 , ~2!

Unfortunately, the GEA typically worsens results for re
systems relative to LSD, because real atoms and molec
have rapidly varying densities. The reliability of LSD is n
due to its accuracy for slowly varying densities, and so m
be due to other considerations.

On the other hand, generalized gradient approximati
~GGA’s!9–23

EXC
GGA@n↑ ,n↓#5E d3r f @n↑~r !,n↓~r !,¹n↑ ,¹n↓#, ~3!

have reduced the LSD atomization energy errors by abo
factor of 5, and so have made density functional theory co
petitive with the traditional methods of quantum chemist
For very small systems, the latter methods still provide
benchmark of accuracy, but the favorable size-scaling
density functionals is a great practical advantage.31 Hybrids
of GGA’s with exact Kohn–Sham exchange energies32–34
0 © 1998 American Institute of Physics
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can further reduce errors. Unfortunately, the GGA integra
f of Eq. ~3! is not so well-defined as the LSD integrand
Eq. ~1!. The Perdew–Wang 1991~PW91! GGA,15 its simpli-
fied Perdew–Burke–Ernzerhof~PBE! form,17,22 and certain
hybrids34 were derived without semiempirical paramete
But there are several semiempirical GGA’s,13,14 and hybrids
of these with other methods,32,33 which are also widely
used.8 Some of these are not exact for the uniform gas~e.g.,
Refs. 14 and 33, see Table II of Ref. 35!. Those GGA’s for
which Eq. ~3! reduces to Eq.~1! when the gradient argu
ments are set to zero have two powerful advantages:~1!
They are exact in the limit in which the restricted GGA for
can be exact, and~2! they implicitly include the highly ac-
curate LSD approximation to the on-top hole, which mak
them reliable for a broad range of real systems.

The aim of this article is to summarize our current u
derstanding of why local~LSD! or semilocal~GGA! density
functionals work for real systems. We discuss only tho
reasons that we believe are of practical importance, and
cus on results new to this work. This article is addressed
to the discriminating users of density functionals, who wa
to understand the rationale and limitations of the method
to make an informed choice among the functionals availa
But it is also addressed to the developers of density funct
als, in the belief that a deeper understanding of existing fu
tionals can lead to new ones of greater accuracy and relia
ity. With another factor of 5 improvement, activation barrie
and chemical reaction rates could yield to reliable electro
structure calculations.

Note that, while the next evolution in densit
functionals36 may go beyond the semilocal form of Eq.~3!,
we would still advocate performing and reporting the sa
calculation at several levels—local, semilocal, and fu
nonlocal—for the sake of the insight this can provide towa
the continuing development of the theory.

II. BACKGROUND AND SUMMARY OF CONCLUSIONS

In this section, we review the current understanding
why LSD is reliable. We define several exact quantit
which are standard in spin-density functional theory, and
troduce our notation. We use atomic units (e25\5m51)
throughout.

Following Levy,37 the ground-stateN-electron wave
function may be defined as that wave function which yie
the exact ground-state spin densities and minimizes the
pectation ofT̂1V̂ee, whereT̂ is the kinetic-energy operato
and V̂ee is the interelectronic repulsion. This definition ma
be usefully generalized toCl@n↑ ,n↓#, defined as the wave
function which yieldsn↑ and n↓ and minimizesT̂1lV̂ee.
The coupling-constantl continuously connects the physic
system (l51) with the Kohn–Sham noninteracting syste
(l50), so that, e.g.,Cl50@n↑ ,n↓# is the Kohn–Sham wave
function. The pair density at coupling constantl is
Downloaded 11 Dec 2002 to 128.6.71.63. Redistribution subject to AIP
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Pl~r ,r 8!5N~N21! (
s1 ...,sN

E d3r 3¯E d3r N

3uCl~r ,s1 ,r 8,s2 ...,rN ,sN!u2. ~4!

For a discussion of theN-representability@Eq. ~4!# of model
pair densities, see Ref. 38. The exchange-correlation h
density atr 8 around an electron atr for coupling strengthl,
nXC,l(r ,r 8), is defined by

Pl~r ,r 8!5n~r !@n~r 8!1nXC,l~r ,r 8!#, ~5!

wheren(r ) is the density atr . The exchange-correlation en
ergy is simply 1

2 the Coulomb attraction between thel-
averaged hole density and the density of the electron it
rounds, i.e.,

EXC5E
0

1

dlEXC,l5E d3r E d3u
n~r !nXC~r ,r1u!

2u
,

~6!

wherenXC5*0
1dlnXC,l . This coupling-constant average

needed to include the kinetic contribution to the exchan
correlation energy. LSD may be considered as an ansatz
the hole

nXC,l
LSD ~r ,r1u!5nXC,l

unif ~r s~r !,z~r !;u!, ~7!

where nXC,l
unif (r s ,z;u) is the l-dependent exchange

correlation hole of a uniform gas of densityn53/(4pr s
3) and

relative spin polarizationz5(n↑2n↓)/n, as a function of
separationu. @Insertion of Eq.~7! into Eq.~6! yields Eq.~1!.#

Gunnarsson and Lundqvist39,40 long ago pointed out tha
the exact exchange and correlation holes satisfy sum r
and that, because LSD replaces the exact hole by tha
another physical system, it likewise satisfies these relatio
They also demonstrated that the complete six-dimensio
exchange hole of an atom is not reproduced in detail by
LSD approximation. For example, the LSD hole is sphe
cally symmetric about its electron, while the exact hole
highly asymmetric. However, the energy depends only
the spherical average

nXC~r ,u!5E dVu

4p
nXC~r ,r1u!, ~8!

which is well-approximated in LSD.
Ziegler, Rauk, and Baerends41 noted that the exchang

hole at u50 is a function of the local spin densities atr
~when the Kohn–Sham wave function is a single Slater
terminant!, and is, therefore, exact in LSD. This sets t
scale for the overall depth of the hole, while the normaliz
tion sum rule makes its shape well-approximated by LS
This fact also helps to explain why LSD is more accura
than the local-density approximation~LDA !, even in the ab-
sence of an external magnetic field where only the total d
sity is formally needed. Furthermore, Perdew pointed
that the exchange hole is everywhere negative,11 a condition
also satisfied within LSD.

In the present work, we extend several of these ide
We demonstrate that, even when correlation is included,
LSD approximation to the on-top hole is extremely go
~although not exact!. This yields an equally accurate cusp
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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u50, since LSD also satisfies the electron–electron c
condition asu→0. Thus even LSD has an accurate cusp b
into its model for the pair density. The difficulty in calcula
ing the on-top hole~as well as slowness of convergence! in
wave function methods employing single-particle bases
often attributed to this electron-electron cusp.42–45

The density-gradient expansion for the energy of Eq.~2!
follows from the gradient expansion for the holenXC~r ,r
1u! around an electron, which has a characteris
structure:46,47 When the densityn(r ) varies sufficiently
slowly over space, the addition of each term of higher or
in ¹ improves the description of the hole close to the el
tron (u→0), while worsening it far away (u→`). There is
no gradient correction to the on-top exchange holenX(r ,r ),
and we shall argue that the gradient correction to the on
correlation holenC(r ,r ) is very small. This correction wa
neglected in the construction of the PW91 GGA via the re
space cutoff of the spurious large-u contributions to the gra-
dient expansion for the hole density.15

We also extend the argument that not all details of
hole are well-described in LSD. Define the system averag
a function ofr as

^ f &5
1

N E d3rn~r ! f ~r !, ~9!

where N5*d3rn(r ). Then Eq. ~6! contains not only a
spherical average over the hole, but also a system ave
We show that regions of space where LSD is not so good
given little weight in this system average.

We discuss ‘‘abnormal’’ systems, in which the LSD o
top hole is not accurate, and we show how the depth of
on-top hole@on the scale ofn(r )# correlates with the locality
of the functionalEXC@n↑ ,n↓#. Finally, we discuss the on-to
hole in approximations other than LSD or GGA. We no
that all our conclusions are consistent with the results
recent quantum Monte Carlo calculations of bulk silicon.48

III. ACCURACY OF THE LOCAL APPROXIMATION

A. Exact conditions on the on-top hole

As discussed in Sec. II, LSD contains an approximat
for the on-top hole, i.e.,

nXC,l
LSD ~r ,r !5nXC,l

unif ~r s~r !,z~r !;u50!. ~10!

Until recently, it was suspected that the LSD on-top h
density is exact. That possibility is now disproved,49 but the
LSD on-top hole is still remarkably accurate in ‘‘normal
systems~see below!, where the wave functionCl tends di-
rectly to a single Slater determinant asl→0. To see why,
consider the ratio of the on-top hole density to the lo
density, which is bounded by

21<
nXC,l~r ,r !

n~r !
<2

1

2
@11z2~r !#. ~11!

These inequalities hold both exactly and in LSD. The le
hand inequality follows from the non-negativity of the pro
ability in Eq. ~4!; the limiting value of21 is achieved both
for a fully spin-polarized system (uzu51) and in the strong-
coupling (l→`) or low-density limits.50 The right-hand in-
Downloaded 11 Dec 2002 to 128.6.71.63. Redistribution subject to AIP
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equality is not universal, but holds in LSD and in all norm
electronic systems; the limiting value is achieved in t
weakly interacting (l→0) or high-density limit.

Furthermore, the exact interelectronic cusp condit
is42,51,52

]nXC,l~r ,u!

]u U
u50

5l@n~r !1nXC,l~r ,r !#, ~12!

which is naturally satisfied by the LSD hole. Thus an acc
rate on-top hole leads to an accurate hole nearby~u close to
0!.

B. Importance of being averaged

Given all these bounds and limits, it is possible th
nXC,l(r ,r )'nXC,l

LSD (r ,r ). Figure 7 of Ref. 35 shows that thi
is so for the He atom, while Fig. 1 shows that this is also t
for the H2 molecule at equilibrium bond length atl51, ex-
cept in the region close to the nucleus. It is even true in
classically forbidden tail of the density.

In Fig. 1, the exchange (X) curve is simply2n(r )/2, as
the system is spin unpolarized. The LSD curve was fou
using Eqs.~A1! and~A3! of Appendix A for the uniform gas
on-top hole. The CI~configuration interaction! curve was
constructed from an accurate CI wave function calculation~a
modified version of theCOLUMBUS program system53,54 has
been used!, which recovers 98% of the correlation energ
Given the difficulty of recovering the cusp in such a calc
lation, we expect that the exact on-top hole is perhaps 1
deeper than found in this CI.

The LSD error in the nuclear region is not as serious
might first appear, as the phase space factor (4pr 2 for an
atom! minimizes its contribution to the system average
Eq. ~6!. Similarly, inaccuracies at large distances do n
contribute heavily, due to the weight factorn(r ) in the
system average. To illustrate this, we show the He at
radial contribution to the system-averaged on-top ho
4pr 2n(r )nXC,l(r ,r ), in Fig. 2. The system-averaged qua
tity is simply the area under this curve, and is underestima
by only 3%.

FIG. 1. On-top hole in H2 molecule (l51).
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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We expect that differences between LSD and ex
exchange-correlation holes in other systems55 will also
lessen in the system average.

C. Approximate universal behavior

Multiplying Eq. ~11! through byn2(r ) and integrating
over all space yields the system average

21<^nXC,l~0!&/^n&<2 1
2@11^z&2# ~13!

where

^z2&5
*d3r z2~r !n2~r !

*d3rn2~r !
, ~14!

and the other averages are as in Eq.~9!. Figure 3 is an ap-
proximate ‘‘universal curve’’ for thel51 on-top hole ratio
versus the average density parameter49

^r s&5
*d3rr s~r !n↑~r !n↓~r !

*d3rn↑~r !n↓~r !
, ~15!

FIG. 2. On-top hole in He atom (l51).

FIG. 3. Approximate universal curve for the system averagedl51 on-top
exchange-correlation hole density in spin-unpolarized systems, as a fun
of the average Seitz radius in the system~see text!. The solid curve is for the
uniform gas, the dashed curve is for Hooke’s atom, while the diamo
indicate essentially exact results from highly accurate wave functions~Ref.
56!. The Hartree–Fock or exact exchange value is20.5.
Downloaded 11 Dec 2002 to 128.6.71.63. Redistribution subject to AIP
t

for ^z2&50. The diamonds represent highly accurate qu
tum Monte Carlo variational calculations56 for real atoms.
The dashed line represents exact analytic results for Hoo
atom, which consists of two electrons bound to a cen
potential by a spring of frequencyv ~see Appendix B!. The
solid curve in Fig. 3 is the on-top hole ratio for a unifor
electron gas. Yasuhara’s summation of ladder diagra
gives an expression for this quantity which may be exac
low densities (r s→`), but is slightly in error at high densi
ties (r s→0). In Appendix A, we give our own analytic ex
pression for this quantity, which corrects Yasuhara’s expr
sion at higher densities, and was used to generate
uniform-gas values in Figs. 1, 2, and 3. The accuracy of
LSD approximation for the on-top hole displayed in Fig.
shows that this on-top hole density is the missing link b
tween real atoms and molecules and the uniform gas~see
below!.

Such a curve exists for every value of^z2&, becoming
lower as^z2& grows, and reducing to a horizontal line alon
21 when ^z2&51, i.e., the fully spin-polarized case. W
have included the value for Li in Fig. 3, because its value
^z2&50.03 is sufficiently close to zero.

D. Leading correction to Kohn–Sham on-top hole

To study the behavior of this approximate univers
curve in more detail, we note that, as the high-density limi
approached (̂r s&→0), the curve has a finite slope~for nor-
mal systems!. From the scaling arguments of Appendix C
we can write49

^nXC,l~0!&

^n&
→211S 12^z2&

2 D ~12al^r s&!, ~16!

where a is a dimensionless constant, characteristic of
system, which can be calculated from Go¨rling–Levy pertur-
bation theory57,58 around thel50 limit, keeping the density
fixed. A simple expression may be given in terms of t
leading~in l! correction to the pair density47 of Eq. ~4!49

a52
*d3rP ~1!~r ,r !

*d3rPl50~r ,r !r s~r !
, ~17!

where

Pl~r ,r 8!5Pl50~r ,r 8!1lP~1!~r ,r 8!1¯ . ~18!

To calculate this from many-body perturbation theory,3,29 de-
fine the exactl-dependent retarded density–density respo
function

xss8l~r ,r 8;t2t8!

52 iu~ t2t8!^Clu@dn̂s~r ,t !,dn̂s8~r 8,t8!#uCl&, ~19!

wheredn̂ is the density-fluctuation operator andCl is the
ground-state wave function at coupling strengthl.3 The Fou-
rier transform of Eq. ~19! yields the density respons
Re$dns(r ,v)exp(2ivt)% to a time-dependent weak extern
perturbation Re$dys8

ext(r 8,v)exp(2ivt8)%:

dns~r ,v!5(
s8

E d3r 8xss8l~r ,r 8;v!dvs8
ext

~r 8,v!. ~20!

ion
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Then

Pss8l~r ,r 8!5ns~r !ns8~r 8!2E
0

` dv

p
Im xss8l~r ,r 8;v!

2dss8ns~r !d~r2r 8!. ~21!

Summation of Eq.~21! over s and s8 yields a standard
expression29 for the pair density. Equation~21! immediately
simplifies when we consider the on-top value, since the P
exclusion principle requires

Pssl~r ,r !50, ~22!

i.e., parallel spins do not contribute to the on-top pair d
sity. Furthermore, since atr5r 8 all contributions are sym-
metric under interchange ofs ands8, we have

Pl~r ,r !52S n↑~r !n↓~r !2E
0

` dv

p
Im x↑↓l~r ,r ;v! D .

~23!

Thus only antiparallel contributions tox contribute, which
greatly reduces the number of diagrams needed to be ev
ated in perturbation theory.

We expand each side of this exact relation to first or
in l. In zeroth order, the Kohn–Sham susceptibility is

xss8
~0!

~r ,r 8;v!5dss8(
i , j

~ f i ,s2 f j ,s!ni~r ,r 8!nj* ~r ,r 8!

e i2e j1v1 i01
,

~24!

where the sum runs over all Kohn–Sham orbitals,f i ,s is the
spin-occupation number of thei-th orbital with energye i ,
and

ni~r ,r 8!5f i* ~r !f i~r 8!. ~25!

Since the zero-order susceptibility is diagonal in spin, it do
not contribute to the on-top pair density, so Eq.~23! imme-
diately recovers the exact Kohn–Sham~or exchange orl
50) pair density

Pl50~r ,r !52n↑~r !n↓~r 8!. ~26!

In first order, the perturbation consists of both the Co
lomb electron–electron repulsion, plus a change in the ex
nal potential, chosen so that the density remains fixed,
following the adiabatic connection. This is called Go¨rling–
Levy perturbation theory.57,58 This leads to nine differen
contributions tox (1), but only the direct Coulomb term~as
included in the random phase approximation29! contains an
antiparallel spin contribution. We find

x↑↓
~1!~r ,r ;v!5E d3r 2E d3r 3

x↑↑
~0!~r ,r2 ;v!x↓↓

~0!~r3 ;r ;v!

ur22r3u
.

~27!

Insertion of Eq.~27! into Eq.~21!, and using Eq.~24!, yields,
with the help of the identity 1/(x1 i01)5P(1/x)2 ipd(x)
Downloaded 11 Dec 2002 to 128.6.71.63. Redistribution subject to AIP
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P~1!~r ,r !

54 ReH E d3r 8E d3r 9
1

ur 82r 9u

3 (
i↑2occ.

j↑2unocc.

(
i 8↓2occ.

j 8↓2unocc.

ni~r ,r 8!nj~r 8,r !ni 8~r 9,r !nj 8~r ,r 9!

e i1e i 82e j2e j 8 J .

~28!

Equation~28! provides a universal expression for the linea
in-l correction to the on-top pair density, analogous to sim
lar expressions for the second-order correlation energy. T
correction becomes exact in the high-density limit, a
yields the high-density limit of the correlation on-top hol
Despite the large number of integrals and sums, it is straig
forward to evaluate~easier than second-order perturbati
theory for the energy!. We evaluate this correction for two
extreme situations, the spin-polarized uniform gas and
spin-unpolarized two-electron system, demonstrating its u
versal applicability. Insertion of Eq.~28! into Eq.~17! yields
a entirely in terms of Kohn–Sham quantities.

For the spin-unpolarized uniform gas,a is known
analytically:51,59

a5S 4

9p D 1/3 2

5p
~p216 ln 223!

'0.7317 ~z50 uniform gas!. ~29!

In Appendix D, from Eq.~28!, we derive an exact expressio
a~z!, which we evaluate and plot in Fig. 4. We finda
changes little withz, and

a52
61/3

p4/3 S p2

12
12 ln~3!ln~2!1dilog~4!12 dilog~3! D

'0.9744 ~z51 uniform gas!, ~30!

where dilog(x)5*1
xdt ln(t)/(12t). Thus the overall polariza-

tion dependence of the on-top correlation hole is similar

FIG. 4. Coefficienta characterizing leading correction to on-top hole
uniform gas as a function of spin polarization.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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that of exchange, as in Eq.~16! and as assumed by Perde
and Wang60 in their parametrization of the exchang
correlation hole of the uniform gas.

To demonstrate that the on-top hole is not exact in LS
Burke et al.49 calculateda analytically for the two-electron
Hooke’s atom in the high-density limit, and found it differe
from the uniform gas value

a52
ln@~21) !/8~22) !#53/2

~311/6p2/3!

'0.7713 ~Hooke’s atom!. ~31!

The result of that calculation was first reported in Ref. 49.
Appendices E and F, we derive that result in detail. We a
reported49 the result of numerical calculations with A. Sav
of the on-top pair density in the two-electron ion series
Z→`, finding

a'0.799 ~22electron ion!. ~32!

E. Gradient expansion

From the arguments in Appendix C, we can derive
form of the LSD approximation to the system-averaged h
and its leading gradient correction

^nXC,l~u!&@n,z#

5
1

N E d3rn2~r !@gunif~lr s~r !,z~r !;u/r s~r !!21

1G~lr s~r !,z~r !;u/r s~r !!u¹n~r !u2/n8/3~r !1¯#.

~33!

This expression will be accurate for systems of slowly va
ing density, and for smallu should be much better behave
than the corresponding gradient expansion for the energ

EXC,l5E d3r FAXC~lr s!n
4/31CXC~lr s!

u¹nu2

n4/3 1¯ G , ~34!

~see next section!. The exchange limit is recovered by settin
l50. SinceG(lr s ,z;0) vanishes in thel→0, l→`, and
z→1 limits, we anticipate that it is small everywhere.

To evaluateG(u50), we would have to calculate th
on-top hole for a slowly varying electron gas, a calculati
which is beyond the scope of this paper. However, we
get some idea of its magnitude by comparing with the sm
l limit of the previous section. We write

G~lr s ,z;u50!5lr sg~z!1¯ . ~35!

Insertion of Eq.~33! into Eq. ~17! then yields

a5aLSD22g~0!G ~36!

where

G5
*d3r @g~z!/g~0!#u¹nu2/n

*d3r ~12z2!n5/3 . ~37!

Thusg~z!, a single universal function ofz, characterizes the
gradient expansion fora. For the high-density Hooke’s

atom, we findG5( 500
27 )1/65p, yielding an empirical estimate

of g(0)'27.7531024. On the other hand, for the two
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electron ion series in the limitZ→`, we have G

5( 5
3)

3(4p)2/3, yielding g(0)'21.331023. Since this
number should be system independent, we can conclude
the gradient expansion for the on-top hole does not appl
both these systems, or that there is numerical error in
~32!. We suspect that the Hooke’s atom estimate is a reas
ably accurate one, since a similar estimate for the nonin
acting kinetic energy gives 90% of the correct Kirzhnits61

gradient coefficient.
The slowly varying gas has been treated within the r

dom phase approximation by Langreth and Perdew,29 and the
high-density limit of the results parametrized by Langre
and Mehl.10 For z50, this yields~see Ref. 15!

nC
GEA~r ,u50!5nC

LSD@n~r !,u50#1
u¹nu2

72p3n2 . ~38!

Undoing the coupling constant integration and compar
with Eq. ~33!, we find g(0)5(4p/3)1/3/(36p2)'1.44
31023. While this value is of the same order as our emp
cal estimates, the sign is reversed, probably because
simple Langreth–Mehl approximation does not capture
complexity of the hole found in Ref. 29. Thus we give n
precise value forg(z50). The most direct route to this
number appears to be either numerical evaluation of Eq.~28!
for a gas with a density which is slowly varying in one d
rection, or extraction from the hole found in Ref. 29.

F. ‘‘Abnormal’’ systems

Under the scaling of Eq.~C3!, the on-top hole ratio
^nXC,l(u50)&@n,z#/^n& remains invariant, as doesl^r s&.
Thus, we can also think of Fig. 3 as a representation of
l-dependence of the on-top hole density in a sp
unpolarized (z50) normal system: Just relabel the vertic
and horizontal axes as^nXC,l(u50)&/^n& andl^r s&, respec-
tively.

In the noninteracting limitl50, we have the Kohn–
Sham wave functionCl50(@n,z#;r1 ,s1 ,...,rN ,sN), which
is a single Slater determinant of Kohn–Sham orbitals fo
normal system. More generally,Cl50 could also be a linear
combination of degenerate ground-state determinants for
HamiltonianĤl50 . For any finite system, we expect to fin
nonzero overlap̂ Cl50uCl&, and then alll-dependencies
have an analytic perturbation or Taylor expansion, e.g.,

^nXC,l~u50!&@n,z#/^n&5(
j 50

`

aj~l^r s&! j . ~39!

The coefficientsaj are functionals ofz~r ! and of the shape o
the electron densityn(r ), but are invariant under the uniform
scalingn(r )→g3n(gr ) andz(r )→z(gr ). For example,nX

andEX are purely of orderl0, while nC,l andEC,l vary like
l for small l ~in the absence of a strict degeneracy forl
50).

These expectations may fail in an infinite system like t
uniform electron gas, wherêCl50uCl&50. For example,
the on-top hole ratio in the spin-unpolarized gas is62

nXC,l
unif ~u50!

n
52

11alr s1bl2r s
2 ln~lr s!

2
1¯ . ~40!
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The exchange hole has the expectedl0 dependence, and th
correlation hole again starts out likel, but the next term in
the expansion is nonanalytic. In the opposite limitu→`, the
correlation hole density becomes of orderl0 in order to can-
cel the exchange hole, in such a way thatEC,l;l ln l for
small l. Capturing this nonanalyticity requires summing t
random phase approximation~RPA! or ring-diagrams, which
properly account for the long-range part of the Coulomb
teraction.

Our model for the uniform gas on-top hole presented
Appendix A is analytic inl. Thus, the on-top hole ratio in
the uniform electron gas has essentially the same kind
l-dependence as that of a finite normal system, making
quantity more transferable from the uniform gas thanEC,l

itself.
A system is normal or abnormal to the extent that

system-averaged on-top hole ratio^nXC,l(u50)&@n,z#/^n&
for each coupling constantl is or is not close to its LSD or
uniform-gas approximation, evaluated using the true grou
state spin densitiesn↑(r ) andn↓(r ) for the system. In other
words, a normal system is described approximately by
re-labeled Fig. 3,~or by its generalization tozÞ0). Abnor-
mal systems typically arise in one of two ways:~1! If the
Kohn–Sham (l50) system has a ground state which is
linear combination of several determinants~e.g., an atomic
triplet state withS51 and Ms50), then the LSD on-top
hole ratio can be wrong even at thel50 or exact exchange
limit.63 ~2! If the Kohn–Sham orl50 system has a nearl
degenerate ground state, then the analytic expansion of
~39! can become irregular, with leading coefficientsuaj u
much greater than unity. Examples of abnormal systems
be found in Refs. 35, 63, and 64. The breaking of symme
which can partially rescue semilocal descriptions of su
systems is discussed in Ref. 64.

G. Locality of the energy

In this section, we examine the concept of nonlocality,
the sense of how much error LSD makes. We have s
above that LSD is most accurate nearu50, and least accu
rate at largeu. Thus the deeper the hole is at the origin, a
therefore, from the sum rule, the shorter its range inu, the
better approximated it should be in LSD. We may test t
idea by examining the holes and corresponding energie
three different coupling constants:l50 ~exchange!, l51
~full coupling strength!, and averaged overl ~as in the actual
EXC). In Fig. 5, we plot these three holes for the sp
unpolarized uniform electron gas60 at r s53, a typical
valence-electron density. Since the on-top correlation hol
negative, the shallowest of these holes is the exchange
followed by the coupling-constant averaged hole, and
deepest is the full coupling-strength hole. These qualita
features will be shared by the system-averaged holes of m
inhomogeneous systems. Thus we expect the exchange
ergy to be the least local, and the full coupling-strength
ergy the most local, of the three.~This argument, which pro-
vides the basis for our hybrid work,34 is valid at typical core
and valence electron densities. It begins to fail for an el
tron gas of extremely low density, where the exchan
correlation hole develops a strong positive bump at largeu.!
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We now examine the degree of nonlocality in the PW
GGA.15 In the first three columns of Table I, we tabulate t
error made by LSD relative to PW91, i.e., (ELSD

2EPW91)/EPW91, as a percentage. Looking across any ro
we see that indeed this error is largest for exchange and
for full coupling strength. Looking down any column, w
also see that this effect becomes less significant as we
proach the high-density limit~in which exchange dominate
correlation!.

IV. ON-TOP HOLE IN OTHER APPROXIMATIONS

We believe that a correct on-top hole density is an
gredient of every successful first-principles density fun
tional approximation, and that conversely an incorrect on-
density indicates the need for further refinement of an
proximation. Here we discuss the on-top hole density
three approximations which attempt to go beyond LSD
GGA. For systems with fixed~integer! electron number,
these approximations also satisfy the correct sum rule on
exchange-correlation hole,*d3r 8nXC(r ,r 8)521. The self-
interaction correction comes closest65 to satisfying the gen-
eralization of this sum rule to systems with fluctuating~non-
integer on average! electron number, and thus can mimic th
derivative discontinuity65,66 of the exact functional.

FIG. 5. Exchange-correlation holes in the spin-unpolarized uniform elec
gas with r s53, for differing coupling-constant strengths. Large-u oscilla-
tions have been averaged away, following Ref. 60.

TABLE I. Errors in LSD energies, relative to PW91, for several atoms~%!.

Atom DEX DEXC DEXC,l51 DEC

H 213 27 25 236
He 213 26 23 145
Li 213 27 25 162
N 210 27 25 114
Ne 29 26 24 94
Ar 28 25 24 85
Kr 26 24 23 71
Xe 25 24 23 64
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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A. Weighted-density approximation

Another popular approximation in density function
theory is the weighted density approximation~WDA!67,68

nXC
WDA~r ,r1u!5n~r1u!@gunif~ ñ~r !;u!21#, ~41!

where the weighted densityñ(r ) is chosen to satisfy the sum
rules on the exchange and correlation holes, and is a non
functional of n(r ). At u50, to the extent thatñ(r ) differs
from n(r ) @andn(r ) is not so large that correlation may b
neglected#, WDA is apt to be less accurate than LSD, even
a spin-unpolarized system.

We note that a recent variation, which does WDA f
only exchange69 and includes a correction to accommoda
the uniform gas, does reproduce the LSD on-top hole.

The on-top hole of the average density approximat
~ADA !67 is incorrect in many of the limits in which that o
LSD is correct.

B. Self-interaction correction

The self-interaction correction~SIC! to LSD of Perdew
and Zunger70 is

EXC
SIC5EXC

LSD2 (
i ,s

occup. H E d3r E d3r 8
ni ,s~r !ni ,s~r 8!

2ur2r 8u

1E d3rni ,s~r !eXC
unif~ni ,s~r !,0!J , ~42!

whereni ,s(r )5uc i ,s(r )u2 is the contribution to the densit
from orbital i, s. The corresponding ansatz for the hole is

nXC
SIC~r ,r1u!5nXC

unif~n↑~r !,n↓~r !;u!

2 (
i ,s

occup.
ni ,s~r !

n~r !
@ni ,s~r1u!

1nXC
unif~ni ,s~r !,0;u!#. ~43!

At zero separation (u50), the SIC hole density and cus
reduce to those of LSD, sincenXC

unif(ni ,s,0;u)52ni ,s(r )
1O(u2).

C. Exact exchange mixing

Becke32 has shown that mixing some exact exchan
with GGA in the form

EXC
mix5a~EX2EX

GGA!1EXC
GGA, ~44!

with a'0.25, can lead to significant improvement of atom
zation energies. It has recently been shown that such e
exchange mixing can be derived without empirical inp
from very general considerations,34 and the value of the mix-
ing parameter explained in terms of perturbation the
results.34 The accompanying hole is

nXC
mix~r ,r1u!5a@nX~r ,r1u!2nX

GGA~r ,r1u!#

1nXC
GGA~r ,r1u!. ~45!

Since LSD and GGA give the exact on-top exchange hole
normal systems, in these cases the mixing functional re
duces the LSD on-top hole.
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APPENDIX A: INTERPOLATION FORMULA FOR
UNIFORM ELECTRON GAS

Consider a spin-unpolarized (z50) electron gas of uni-
form densityn53/(4pr s

3). The on-top hole density is

nXC,l~r ,r !5n@gl~r s ,u50!21#, ~A1!

where gl(r s ,u) is the pair distribution function. From the
scaling argument of Appendix C,gl(r s,0)5gl51(lr s,0).
Yasuhara made an approximate summation of ladder
grams, and found71

gl51
Yasu~r s,0!5

1

2 F(
i 50

`
~k2r s!

i

i ! ~ i 11!! G22

5
1

2

k2r s

I 1
2~2kAr s!

,

~A2!

wherek5(4/3p)(9p/4)1/3 andI 1 is a modified Bessel func
tion of order 1.~This calculation has recently been refined.72!
The low-density (r s→`) limit of Eq. ~A2! can be deduced
from the asymptotic behavior of the modified Bessel fun
tion @see Eq.~9.7.1! of Ref. 73#, yieldingDr s

3/2e2AAr s, where
D52pk3532/3p53.3953 andA54k53.2581. Its high-
density limit is (12ar s)/2, wherea5(4/p))4/350.6634.
An accurate closed-form representation of Eq.~A2! for all r s

is

gl51~r s,0!5D@~g1r s!
3/21b#e2AAg1r s, ~A3!

where b5exp(AAg)/(2D)2g3/2 makes gl51(r s50,0)5 1
2

andg55.8648~andb5379.12) recovers the Yasuhara valu
for a.

Geldart59 and later Kimball62 evaluated the exact high
density limit for gl51(0), also finding (12ar s)/2, but with
a given by Eq.~29!. We can modify the parametersg andb
of Eq. ~A3! to achieve this limit, with the resultg54.7125
andb5163.44. The coupling-constant average is

ḡ~r s,0!5E
0

1

dlgl51~lr s,0!

5
1

r s
E

0

r s
drsgl51~r s,0!

5
2D

A2r s
@F~AAg!2F~AAg1r s!# ~A4!

where

F~z!5e2z@~z11!~b124/A3!1z2~z214z112!/A3#.
~A5!

We believe that our interpolation between the low- a
high-density (a50.7317) limits provides the most accura
values available for the on-top hole density of the unifo
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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gas. These values agree with the results of quantum M
Carlo simulations,74 within the accuracy of the latter~Table
II !.

APPENDIX B: NUMERICAL SOLUTION OF HOOKE’S
ATOM

To better understand the accuracy of the LSD on-
hole, we performed essentially exact calculations on a sim
model system, the Hooke’s atom, which consists of two e
trons repelling each other via a Coulomb repulsion,
bound to an attractive center by a simple oscillator poten
of frequencyv. For certain discrete values ofv, the exact
wave function may be written analytically.76,77 Here, by ex-
panding the wave function in powers of the separation
tween the electrons,78 we solve the problem numerically b
exact diagonalization for any value ofv*1023, beyond
which numerical instability causes our solution to fail on
machine with 32-digit accuracy. The advantage of this mo
over the two-electron Coulombic ion series is that there is
cusp in the density at the center, where the rapid variatio
the density can cause LSD to become less accurate, as in
1. Figures 2 and 3 of the first paper in Ref. 64 show that
all regions of the Hooke’s atom in which the on-top ho
density is significant, the LSD on-top hole is an excelle
approximation. These results for the Hooke’s atom syste
averaged on-top hole are presented in Fig. 3, and comp
with uniform gas values. The LSD hole is an even bet
approximation in this case than for Coulombic atoms, as
be seen by the proximity of the curves.

APPENDIX C: LEVY SCALING AND THE GRADIENT
EXPANSION

The scaling properties of the Kohn–Sham (l50) wave
function have been used to derive the forms for the grad
expansions of the noninteracting kinetic and excha
energies.79 Here we shall use Levy’s scaling relation for th
interacting wave function to do the same for the exchan
correlation on-top hole.

An external potentialVext(r ) acting on a realN-electron
system produces a densityn(r ) and spin-polarizationz(r ).
Associated withn(r ) andz(r ) for each coupling constantl
~see above! is a wave functionCl@n,z#(r1 ,s1 ,...,rN ,sN).
For anyg.0, consider the uniform scaling

TABLE II. On-top pair distribution functiongl51(r s,0) for the uniform
electron gas. Comparison of Yasuhara’s formula@Eq. ~A2!# with two ver-
sions of Eq.~A3!, and with the results of a Quantum Monte Carlo simulati
~Ref. 74!. Also shown are the results of the effective potential expans
~EPX! of Ref. 75.

r s Eq. ~A2!
Eq. ~A3!

a50.6634
Eq. ~A3!

a50.7317 QMC EPX

1 0.266 0.265 0.250 0.272 0.27
3 0.088 0.084 0.074 0.092 0.085
5 0.033 0.031 0.026 0.023 0.027

10 0.004 0.003 0.003 0.002 ¯
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Cl@n,z#~r1 ,s1 ...,rN ,sN!

→g3N/2Cl@n,z#~gr1 ,s1 ,...,grN ,sN!

5Cgl@ng ,zg#~r1 ,s1 ,...,rN ,sN! ~C1!

where

ng~r !5g3n~gr !, ~C2!

is the scaled density, andzg(r )5z(gr ). The Levy equality
of Eq. ~C1! asserts that the scaled wave function is asso
ated with the scaled density only if the coupling constan
also scaled. Extracting the hole from the wave function
Eq. ~4! yields

^nXC,l~u!&@n,z#→g3^nXC,l~gu!&@n,z#

5^nXC,gl~u!&@ng ,zg#. ~C3!

The important point to note here is that, under coordin
scaling of the wave function, not only is the density scal
but so too is the coupling constant.

We next use the exact form of Eq.~C3! to deduce the
form of the gradient expansion for the hole. The error ma
by a local approximation may be systematically estimated
treating the local approximation as the zeroth order term
Taylor series in gradients of the density. This is the gradi
expansion. The derivation of the gradient expansion fo
quantity is simple in principle: Start with a uniform electro
gas, apply an external potentialdy~r ! that is both weak and
slowly varying, evaluate the quantity to second order and
density to first order indy, then eliminatedy to find the
quantity as a functional of the density. What often comp
cates this derivation in practice is that the unperturbed s
tem is an interacting electron gas, with a long range (1u)
interaction. Here, we do not directly calculate the gradi
expansion, but take a different approach, using scaling a
ments to find the exact form for the gradient expansion.

In an electron gas of slowly varying density, we ca
expand this hole in powers of the density gradient, and
leading correction to LSD is proportional tou¹nu2 by sym-
metry. The scaling equality of Eq.~C3! constrains this gra-
dient expansion for the on-top hole to be of the form of E
~33!. The on-top hole density is

^nXC,l~u50!&@n,z#

51
1

N E d3rn2~r !@g~lr s~r !,z~r !!21

1G~lr s~r !,z~r !!u¹n~r !u2/n8/3~r !1¯#. ~C4!

The first term here is the uniform gas contribution, discus
at length above. The next term must be very small. We e
mate the size of the gradient correction in the text.

APPENDIX D: POLARIZATION DEPENDENCE IN
HIGH-DENSITY UNIFORM GAS

Applying Eq. ~28! to the case of a uniform gas, th
Kohn–Sham orbitals are plane waves,f i(r )5exp(ipi

•r )/AV, whereV is the volume of the system, andpi is the

n
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momentum of thei th state, ande i5pi
2/2. Transforming to a

continuous basis set, so thatS i→V*
@(2p)3#

@(d3
p)#

, and using the

Fourier transform of the Coulomb potential, we find:

P~1!~u50!524E d3k

~2p!3 E p<kF,↑
up1ku>kF ,↓

d3p

~2p!3

3E p8<kF,↓
up81ku>kF,↓

d3p8

~2p!3

4p

k2~k21~p1p8!•k!
.

~D1!

This simplifies to

P~1!~u50!52
kF

5

8p7 E
0

`

dqI@q;~11z!1/3,~12z!1/3#,

~D2!

where I (q;x,y) is a dimensionless function given by E
~15! of Ref. 80. The denominator in Eq.~17! is easier, lead-
ing to kF

5(12z2)(9p/4)1/3/(18p4), yielding

a~z!5
~9/4p5!2/3

12z2 E
0

`

dqI~q;~11z!1/3,~12z!1/3!.

~D3!

APPENDIX E: HIGH-DENSITY LIMIT OF TWO-
ELECTRON SYSTEMS

To illustrate the above results in a simpler fashion,
rederive them for a spin-unpolarized two-electron system
ing Rayleigh–Schro¨dinger perturbation theory. Turning o
the interelectronic Coulomb repulsion as a perturbation
the Kohn–Sham wave function yields

C~r ,r 8!5f0~r !f0~r 8!1lC~1!~r ,r 8!1... ~E1!

where

C~1!~r ,r 8!5(
i , j

8ci j f i~r !f j~r 8!, ~E2!

with the prime on the sum indicating exclusion of the~0,0!
value, and

ci j 5E d3r E d3r 8
f0~r !f0~r 8!f i* ~r !f j* ~r 8!

ur2r 8u~2e02e i2e j !
. ~E3!

Insertion of this form into the definition of the pair densi
produces

PCoul
~1! ~r ,r !54 ReH f0*

2~r !(
i j

8ci j f i~r !f j~r !J . ~E4!

We denote this result byPCoul
(1) , as it is not the correct adia

batic connection formula. Turning on the Coulomb repuls
alone causes a change in density, which also alters the on
hole, via Eq.~26!. The density change is easily shown to

nCoul
~1! ~r !54 Re(

iÞ0
ci0f0* ~r !f i~r !, ~E5!

yielding a net change in the on-top pair density of

Pdens
~1! ~r ,r !5n~r !nCoul

~1! ~r !. ~E6!
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This change is included inPCoul
(1) , but cancelled out ofP(1)

by the change in the external potential. Thus

P~1!~r ,r !5PCoul
~1! ~r ,r !2Pdens

~1! ~r ,r !

54 Re@f0* ~r !#2(
iÞ0
j Þ0

ci j f i~r !f j~r !, ~E7!

i.e., the effect of keeping the density constant is to elimin
all single-particle excitations from the sum. This is precise
the result of applying Eq.~28! to this system.

APPENDIX F: HIGH-DENSITY HOOKE’S ATOM

While Eq. ~28! can be evaluated for any normal dens
by finding the Kohn–Sham potential, orbitals, and energ
and performing the sums and integrals, we show here tha
sum can be performed analytically for the high-density lim
of Hooke’s atom, where the density is simply a Gaussi
The results of this Appendix confirm the initial slope of th
dashed curve in Fig. 3, and provide a detailed derivation
the conclusions of Ref. 49. We first calculatePCoul

(1) , as even
in this simple system, Eq.~28! produces a three-dimension
sum. We use center-of-massR5(r11r2)/2 and relativeu
5r22r1 coordinates, for which the orbitals are denot
FJ(R) and f j(u), respectively. In the center-of-mass m
tion, the orbitals are those of a three-dimensional oscilla
of frequencyv and mass 2, while the relative motion has t
same frequency but mass1

2. Then

PCoul
~1! ~R,u!54 ReF0~R!f0~u!(

Jj
8cJjFJ~R!f j~u!

~F1!

where

cJj52E d3RE d3u
FJ50~R!f j50~u!FJ* ~R!f j* ~u!

u~eJ1e j2eJ502e j50!
.

~F2!

By orthogonality, cJj vanishes, except forJ50, j5( j ,l
50,m50), yielding a very simple expression

PCoul
~1! ~R,0!524F0

2~R!f0~0!(
j 51

` K jU 1

u U0L
e j2e0

f j~0!,

~F3!

where the sum is only over the spherically symmetric eig
states of the relative motion. These states can be mappe
the odd eigenstates of the one-dimensional harmonic osc
tor, given in terms of the odd Hermite polynomials. It is
textbook exercise to show

K jU 1

u U0L 5
~21! j~2 j !!

2 j j !Ap~2 j 11!!

2

u0
~F4!

and

f j~0!f0~0!5
~21! jAp~2 j 11!!

u0
3p22 j j !

, ~F5!

whereu05A2/v. Sincee j5(2 j 13/2)v, and using the Tay-
lor expansion
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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lnS 4
12A12x

x~11A12x!
D 5(

j 51

`
~2 j ! !

j ~ j ! 2!4 j xj ~F6!

we find

PCoul
~1! ~r ,r !52

2 log~2!v

p2 F0
2~r !. ~F7!

To find the density change, we use single-particle or
als. We need only the spherical component, so only coe
cients ci0 , where i5( i ,l 50,m50). Then all functions in-
side Eq.~E3! are spherically symmetric, and we can wri
ur2r 8u5max(r,r8) within the integral without error. This
yields

ci052
4

pr 0iv2iA~2i 11!!
~ b̃i1 c̃i !, ~F8!

with r 05A1/v, and

b̃i5E
0

`

dxe2x2
H2i 11~x!E

0

x

dyy2e2y2
~F9!

and

c̃i5E
0

`

dxe2x2
xE

0

x

dyye2y2
H2i 11~y!, ~F10!

whereHi is the Hermite polynomial of degreei. Using the
generating function for Hermite polynomials, we find

c̃i5Ap

2

~2i 11!! ~21! i

i !2 i 13 ~F11!

and

b̃i52
2i 21

2i 11
c̃i . ~F12!

Inserting these results into Eq.~E6! and integrating over al
space, we find

E d3rn~r !nCoul
~1! ~r !

532pE
0

`

drr 2uf0~r !u2(
i 51

`

ci0f i~r !f0* ~r !

5
64

p2r 0
3 (

i 51

`
ci0c̃i

2i 11A~2i 11!!
52

2v

p2 ln
16~22) !

21)
,

~F13!

where the summation was performed using Eq.~F6!, with
x51.

Last, to finda, we also need̂r s& from Eq. ~15!. This is
a simple Gaussian integral, yielding

^r s&5S 311

59p8D 1/6

v. ~F14!

Combination of Eqs.~17!, ~E7!, ~F7!, ~F13!, and~F14! yields
Eq. ~31! of the main text.
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