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Why semilocal functionals work: Accuracy of the on-top pair density
and importance of system averaging
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Gradient-corrected density functionals provide a common tool for electronic structure calculations
in qguantum chemistry and condensed matter physics. This article explains why local and semilocal
approximations work for the exchange-correlation energy. We demonstrate the high accuracy of the
local spin-densitfL.SD) approximation for the on-top pair density, which provides the missing link
between real atoms and molecules and the uniform electron gas. Special attention is devoted to the
leading correction to exchange in the high-dendity weakly correlated limit. We give an
improved analytic expression for the on-top pair density in the uniform electron gas, calculating its
spin-polarization dependence exactly in the high-density limit. We find the exact form of the
gradient expansion for the on-top pair density, using Levy’s scaling of the interacting wave function.
We also discuss the importance of system averaging, which unweights spatial regions where the
density varies most rapidly. We show how the depth of the on-top hole correlates with the degree
of locality of the exchange-correlation energy. Finally, we discuss how well fully nonlocal
approximationgweighted-density, self-interaction correction, and hybrid-excharegroduce the
on-top hole. ©1998 American Institute of Physids0021-96068)30534-4

I. INTRODUCTION correlation energy per electron of the uniform electron gas.
LSD is exact for an electron gas of uniform spin densities

A fundamental aim of electronic structure theory is to and is hiahlv accurate for svstems of slowly varving densi-
find the ground-state enerdyof N electrons in an external gnly f Sy y varying ae
ties. LSD may be considered the zeroth order term in an

potential. Traditional quantum chemical methods directly ap- L . !
proximate the wave functioh.Kohn—Sham spin-density expansion in gradients of the density, and much effort has

. . . . been expended in the calculation of the leading gradient
functional theory provides an alternative languagein . 7-30 . . :
. | . corrections’~*Inclusion of these corrections yields the gra-
which a self-consistent solution of a one-electron Schro

dinger equation yields both and the electron spin—densié;es, dient expansion approximatidiGEA),

n.(r) andn(r). Kohn—Sham theory is exact in principle,

bLt in prac%ice the exchange-correlation energy as a funcExc LNy N 1=ExeIn ’nl]+2 f d*r

tional of the spin densitie€yc[n;,n;] must be approxi- 77

mated. For many years, the local spin-densitySD) s VN,
approximatiof® has been popular with solid-state X Coor [N ()N (N] —775 - PR @
physicists® but not with quantum chemists. This nonempiri- 7 7

cal theory achieves a remarkable moderate accuracy for atnfortunately, the GEA typically worsens results for real
most all system§,but that level of accuracy is insufficient Systems relative to LSD, because real atoms and molecules
for the reliable prediction of atomization energies and heat§ave rapidly varying densities. The reliability of LSD is not
of reaction’® Recent semilocal functionalslso called gen- due to its accuracy for slowly varying densities, and so must
eralized gradient approximations, GGRs> have suffi- be due to other considerations.

ciently improved this accuracy to make Kohn—Sham theory ~ On the other hand, generalized gradient approximations
popular in quantum chemistry as a reliable, inexpensive al(GGA's)®"?®

ternative to traditional methods. Simple physical

explanation&’ have been given for the character, origins, and ~ E$Sn,,n,]= f d*f[n;(r),n (r),Vn;,Vn;]l, (3
consequences of GGA nonlocality. In this paper, we explain

why LSD is so reliable, and how this reliability carries over have reduced the LSD atomization energy errors by about a

to more accurate functionals such as GGA's. factor of 5, and so have made density functional theory com-
The local spin-densitylL SD) approximation toE,.. is petitive with the traditional methods of quantum chemistry.
For very small systems, the latter methods still provide a

E;SCD[”Tv”L]:f d3rn(r)exarn,(r),n ()], (1) benchmark of accuracy, but the favorable size-scaling of

_ density functionals is a great practical advantiigeybrids
where exg(n;,n,) is the accurately know#i~® exchange- of GGA's with exact Kohn—Sham exchange enerdfie¥
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can further reduce errors. Unfortunately, the GGA integrand

f of Eq. (3) is not so well-defined as the LSD integrand of ~ Pa(r,r’)=N(N—1) > f d3r3-~-J d’ry

Eq.(1). The Perdew—Wang 199PW91) GGA its simpli- Lo

fied Perdew—Burke—Ernzerh¢®BE) form,'"?? and certain X|W (1,00, ,05....Ty 002 (4)
hybrids* were derived without §em|emp;r|g:al parameters.pqy 4 discussion of thh-representabilitfEq. (4)] of model

But there are several semiempirical GGA’s;*and hybrids pair densities, see Ref. 38. The exchange-correlation hole

: 33 H : . .
of these with other method$* which are also widely gensity atr’ around an electron atfor coupling strength,
used® Some of these are not exact for the uniform ¢as., Nyca(r,r’), is defined by

Refs. 14 and 33, see Table Il of Ref.)3Fhose GGA's for

which Eq. (3) reduces to Eq(1) when the gradient argu- Pr(r,r)=n(r)[n(r")+nyc(r,r')1, (5)

ments are set to zero have two powerful advantages: wheren(r) is the density at. The exchange-correlation en-

They are exact in the limit in which the restricted GGA form ergy is simply 3 the Coulomb attraction between the

can be exact, an®?) they implicitly include the highly ac- averaged hole density and the density of the electron it sur-

curate LSD approximation to the on-top hole, which makesounds, i.e.,

them reliaple for a brogd range of real systems. 1 N(F)Nge(,r +U)
The aim of this article is to summarize our current un- EXC:J d?\Excx=J d3rf By ———————~

derstanding of why localLSD) or semilocal(GGA) density 0 ' 2u

functionals work for real systems. We discuss only those 6)

reasons that we believe are of practical importance, and fownhere nXC=féd)\nxm. This coupling-constant average is

cus on results new to this work. This article is addressed firsbeeded to include the kinetic contribution to the exchange-

to the discriminating users of density functionals, who wantcorrelation energy. LSD may be considered as an ansatz for

to understand the rationale and limitations of the method anthe hole

to make an informed choice among the functionals available. LSD _ - unif .

But it is also addressed to the developers of density function- nxc,h(r.,r TU=Mea(ro(n),£(rsu), @

als, in the belief that a deeper understanding of existing funcwhere ni’}{fk(rs,g;u) is the A-dependent exchange-

tionals can lead to new ones of greater accuracy and reliabitorrelation hole of a uniform gas of density= 3/(4r3) and

ity. With another factor of 5 improvement, activation barriersrelative spin polarizatiory=(n;—n;)/n, as a function of

and chemical reaction rates could yield to reliable electronigéeparationu. [Insertion of Eq(7) into Eq.(6) yields Eq.(1).]
structure calculations. Gunnarsson and Lundqvi$t®long ago pointed out that

Note that, while the next evolution in density the exact exchange and correlation holes satisfy sum rules
functionalg® may go beyond the semilocal form of E@), @nd that, because LSD replaces the exact hole by that of
we would still advocate performing and reporting the sameanother physical system, it likewise satisfies thes_e relat_lons.
calculation at several levels—local, semilocal, and fuIIyThey also demonstrated th_at the complete s_lx-dlme_nsml_"lal
nonlocal—for the sake of the insight this can provide towardexchange hgle O.f an atom is not reproduced in d?ta" by '.tS
the continuing development of the theory. LSD approxmatlon. qu example, the_LSD hole is spher_l—

cally symmetric about its electron, while the exact hole is
highly asymmetric. However, the energy depends only on
the spherical average

u

d
Il. BACKGROUND AND SUMMARY OF CONCLUSIONS nxc(r,U)=f A Nxc(r,r+u), (8

In this section, we review the current understanding ofwhich is well-approximated in LSD.
why LSD is reliable. We define several exact quantites  Ziegler, Rauk, and Baererftisnoted that the exchange

which are standard in spin-density functional theory, and inhole atu=0 is a function of the local spin densities @t
throughout. terminanj, and is, therefore, exact in LSD. This sets the

Following Levy®” the ground-stateN-electron wave scale for the overall depth of the hole, while the normaliza-

function may be defined as that wave function which yieldsion sum rule makes its shape well-approximated by LSD.

the exact ground-state spin densities and minimizes the e>Ih'S fact also help_s to explaqn why LSD is more accurate
. L A L than the local-density approximatighDA), even in the ab-
pectation ofT + Ve, WhereT is the kinetic-energy operator

~ . . ) ; ! sence of an external magnetic field where only the total den-
andV., is the |nterglectr0n|c repulsion. ThIS definition may sity is formally needed. Furthermore, Perdew pointed out
be usefully generalized &,[n;,n ], defined as the wave hat the exchange hole is everywhere negathee condition
function which yieldsn; andn; and minimizesT+ A V. also satisfied within LSD.

The coupling-constant continuously connects the physical In the present work, we extend several of these ideas.
system {=1) with the Kohn—Sham noninteracting system We demonstrate that, even when correlation is included, the
(A=0), sothat, e.gW,_o[n;,n ] is the Kohn—Sham wave LSD approximation to the on-top hole is extremely good
function. The pair density at coupling constants (although not exagt This yields an equally accurate cusp at
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u=0, since LSD also satisfies the electron—electron cusp 0
condition asu— 0. Thus even LSD has an accurate cusp built
into its model for the pair density. The difficulty in calculat-
ing the on-top holdas well as slowness of convergehae -0.1
wave function methods employing single-particle bases is
often attributed to this electron-electron cd8p*®

The density-gradient expansion for the energy of @§.
follows from the gradient expansion for the habgq(r,r
+u) around an electron, which has a characteristic
structure®®*’ When the densityn(r) varies sufficiently 03
slowly over space, the addition of each term of higher order

-0.05

-0.15
0.2
-0.25

"XC,/\(I" r)

in V improves the description of the hole close to the elec- 0.3

tron (u—0), while worsening it far awayu— ). There is 0.4 . . .

no gradient correction to the on-top exchange hulér,r), S 2 A 0 1 2 3
and we shall argue that the gradient correction to the on-top r

correlation holeng(r,r) is very small. This correction was FIG. 1. On-top hole in Bmolecule f=1).

neglected in the construction of the PW91 GGA via the real-
space cutoff of the spurious largecontributions to the gra-
dient expansion for the hole densify. - . . .
We also extend the argument that not all details of theequahty is not universal, but holds in LSD and in all normal

hole are well-described in LSD. Define the system average O?Iectron_lc systgms; the I|m|t[ng valug IS qchleved in the
a function ofr as weakly interacting X—0) or high-density limit.

Furthermore, the exact interelectronic cusp condition

iS42,51,52

1
(= | Fmofo, ©
Ny \(r,U)

where N=[d®n(r). Then Eq.(6) contains not only a au - = AN+ nxea(r.nl,

spherical average over the hole, but also a system average. u=0 o

We show that regions of space where LSD is not so good arwhich is naturally satisfied by the LSD hole. Thus an accu-

given little weight in this system average. rate on-top hole leads to an accurate hole negulgiose to
We discuss “abnormal” systems, in which the LSD on- 0).

top hole is not accurate, and we show how the depth of the

on-top holgon the scale of(r)] correlates with the locality

of the functionaEyxc[n; ,n,]. Finally, we discuss the on-top B. Importance of being averaged

hole in approximations other than LSD or GGA. We note  Gijyen all these bounds and limits, it is possible that

that all our conclusions are consistent with the results ohxm(r'r)%nLSD (r,r). Figure 7 of Ref. 35 shows that this

. - XC,\
recent quantum Monte Carlo calculations of bulk silié8n. js'so for the He atom, while Fig. 1 shows that this is also true

for the H, molecule at equilibrium bond length at=1, ex-
IIl. ACCURACY OF THE LOCAL APPROXIMATION cept in the region close to the nucleus. It is even true in the
classically forbidden tail of the density.
In Fig. 1, the exchangeX) curve is simply—n(r)/2, as
As discussed in Sec. Il, LSD contains an approximationthe system is spin unpolarized. The LSD curve was found

(12

A. Exact conditions on the on-top hole

for the on-top hole, i.e., using Egs(A1) and(A3) of Appendix A for the uniform gas
n>L(SC’DX(r,r)=n§‘{2§fx(r3(r),§(r);u:0). (10) on-top hole. The Cl(configuration interactioncurve was

constructed from an accurate Cl wave function calculatson
Until recently, it was suspected that the LSD on-top holemodified version of theoLumBUS program systeRi>* has
density is exact. That possibility is now disprovEcut the  been uselJ which recovers 98% of the correlation energy.
LSD on-top hole is still remarkably accurate in “normal” Given the difficulty of recovering the cusp in such a calcu-
systems(see beloy, where the wave functio®’, tends di-  |ation, we expect that the exact on-top hole is perhaps 10%
rectly to a single Slater determinant 8s-0. To see why, deeper than found in this ClI.

consider the ratio of the on-top hole density to the local  The LSD error in the nuclear region is not as serious as

density, which is bounded by might first appear, as the phase space factarrf4for an
Ny (F27) 1 atom minimizes its contribution to the system average of
- sn'(—r)’s—i[lvt £2(n)]. (1)  Eqg. (6). Similarly, inaccuracies at large distances do not

contribute heavily, due to the weight facto(r) in the
These inequalities hold both exactly and in LSD. The left-system average. To illustrate this, we show the He atom
hand inequality follows from the non-negativity of the prob- radial contribution to the system-averaged on-top hole,
ability in Eq. (4); the limiting value of—1 is achieved both 47-rr2n(r)nxcy)\(r,r), in Fig. 2. The system-averaged quan-
for a fully spin-polarized system {|=1) and in the strong- tity is simply the area under this curve, and is underestimated
coupling \ —) or low-density limits>® The right-hand in- by only 3%.

Downloaded 11 Dec 2002 to 128.6.71.63. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpoljcpcr.jsp



J. Chem. Phys., Vol. 109, No. 10, 8 September 1998

4rr2 n(r) nXC,/\(r’ r)

0

0.2 ’
-04
\

064 n /

0.8 \ 9

He atom

-1.2

r

FIG. 2. On-top hole in He atom\(=1).
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for (£%)=0. The diamonds represent highly accurate quan-
tum Monte Carlo variational calculatiofsfor real atoms.
The dashed line represents exact analytic results for Hooke’s
atom, which consists of two electrons bound to a central
potential by a spring of frequenay (see Appendix B The
solid curve in Fig. 3 is the on-top hole ratio for a uniform
electron gas. Yasuhara's summation of ladder diagrams
gives an expression for this quantity which may be exact at
low densities (;— ), but is slightly in error at high densi-
ties (rs—0). In Appendix A, we give our own analytic ex-
pression for this quantity, which corrects Yasuhara's expres-
sion at higher densities, and was used to generate the
uniform-gas values in Figs. 1, 2, and 3. The accuracy of the
LSD approximation for the on-top hole displayed in Fig. 3
shows that this on-top hole density is the missing link be-
tween real atoms and molecules and the uniform (gage
below).

Such a curve exists for every value @f?), becoming

We expect that differences between LSD and exactower as({?) grows, and reducing to a horizontal line along

exchange-correlation holes in other systemwill also

lessen

in the system average.

C. Approximate universal behavior

Multiplying Eq. (11) through byn?(r) and integrating

over all space yields the system average
—1=(nxc\(0)/(nNy=—F{1+()?]
where
Jd® £(ryn(r)
2\
<§ >_ dernZ(r) '

and the other averages are as in B). Figure 3 is an ap-
proximate “universal curve” for the.=1 on-top hole ratio

versus the average density paranf€ter

(rs)

:fd3rrs(r)n1(r)nl(r)
Jd3n(rn(r)
0 — v
uniform gas
Hookes atom ------
02 exact .
system-averaged on-top hole
04
Be
0.6 Li
He
08
-1 .
0 05 1 15 2 25 3 35 4
(rs)

13

14

(19

FIG. 3. Approximate universal curve for the system averaged on-top

exchange-correlation hole density in spin-unpolarized systems, as a functiggerturbation RES
of the average Seitz radius in the syst&me text The solid curve is for the
uniform gas, the dashed curve is for Hooke’s atom, while the diamonds

indicate essentially exact results from highly accurate wave functiRet
56). The Hartree—Fock or exact exchange value-&5.

—1 when (%=1, i.e., the fully spin-polarized case. We
have included the value for Li in Fig. 3, because its value of
(£?)=0.03 is sufficiently close to zero.

D. Leading correction to Kohn—Sham on-top hole

To study the behavior of this approximate universal
curve in more detail, we note that, as the high-density limit is
approached(fs)—0), the curve has a finite slogéor nor-

mal systems From the scaling arguments of Appendix C,
we can writé®

XC,A 0 1- 2
hen Bl ) a-anea),

where « is a dimensionless constant, characteristic of the
system, which can be calculated from dg—Levy pertur-
bation theory”*®around the\ =0 limit, keeping the density
fixed. A simple expression may be given in terms of the
leading(in \) correction to the pair densftyof Eq. (4)*°

Fd3rPD(r,r)

—>—l+< (16)

=T TP, o1, 17
where
Pa(r,r")=Py_o(r,r")+APO(r,r')+--- . (18)

To calculate this from many-body perturbation thedfyde-
fine the exach-dependent retarded density—density response
function

Xoon (M1 t=t")
=i 0(t—t")(W,\[[on,(r,1), 80, (r" t)]|¥,), (19

where 6n is the density-fluctuation operator and, is the
ground-state wave function at coupling strengthThe Fou-
rier transform of Eq.(19) yields the density response
Re{on,(r,w)exp(—iwt)} to a time-dependent weak external
ext

v (', w)exp(—iot’)}:

n,(r,w)=> fd3r’Xw,K(r,r’;w)5vi)ft(r’,w). (20)
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Then

* dw
Po’a”)\(rvr,):no(r)no’(r’)_ J'O 7 Im ero")\(rir,;w)
—OyerNg(r)S(r—r’). (21

Summation of Eq.(21) over o and ¢’ yields a standard
expressiof? for the pair density. Equatiof21) immediately

simplifies when we consider the on-top value, since the Pauli

exclusion principle requires

Po’a’)\(rfr)zoa (22)

i.e., parallel spins do not contribute to the on-top pair den-

!

sity. Furthermore, since at=r’ all contributions are sym-
metric under interchange of ando’, we have

» dw
Ph(r,r)=2<nT(r)nl(r)—fO o Im x,\(r,r;o)|.
(23)

Thus only antiparallel contributions t@ contribute, which

greatly reduces the number of diagrams needed to be evalu-

ated in perturbation theory.

Burke, Perdew, and Ernzerhof

0.8 *’/—/
0.6
0.4 spin-polarized uniform gas
02
0

0 02 04 06 08 1
¢=(ny—ny)/n

FIG. 4. Coefficienta characterizing leading correction to on-top hole in
uniform gas as a function of spin polarization.

PO(r,r)

1
=4 Re) fd3r’f d3r” ———
r'—r"|

We expand each side of this exact relation to first order

in \. In zeroth order, the Kohn—Sham susceptibility is

fi ,—f oni(r,r’)n¥(r,r’)
(0) . _ ( l,o J,a/ M0 ]
Xo’a-/(ryr :w) 5(1’0’2’] Ei_€j+w+i0+ ,
(24)
where the sum runs over all Kohn—Sham orbit#js, is the

spin-occupation number of thieth orbital with energye; ,
and

ni(r,r’)=¢r(reir’). (29

ni(r,r )’ (r”,eng(r,r”)

x 2>
iT—occ. i"|—occ. €i+6ir—6j—6jr
j7—unocc. .,
j" | —unocc.

(28)

Equation(28) provides a universal expression for the linear-
in-\ correction to the on-top pair density, analogous to simi-
lar expressions for the second-order correlation energy. This
correction becomes exact in the high-density limit, and
yields the high-density limit of the correlation on-top hole.
Despite the large number of integrals and sums, it is straight-
forward to evaluatgleasier than second-order perturbation

Since the zero-order susceptibility is diagonal in spin, it doegheory for the energy We evaluate this correction for two

not contribute to the on-top pair density, so E23) imme-
diately recovers the exact Kohn—Shdpr exchange oi
=0) pair density

Pr=o(r,r)=2n,(r)n (r"). (26)

In first order, the perturbation consists of both the Cou-
lomb electron—electron repulsion, plus a change in the exter-
nal potential, chosen so that the density remains fixed, i.e.,

following the adiabatic connection. This is called thuy—
Levy perturbation theory’®® This leads to nine different
contributions toxy®), but only the direct Coulomb terrtas
included in the random phase approximafircontains an
antiparallel spin contribution. We find

X0 x 9 (rair o)

(1) r,r;w)zfd3r fd“"r
X 2 s [ro—rg

(27)

Insertion of Eq(27) into Eq.(21), and using Eq(24), yields,
with the help of the identity 14+i0,)=P(1/x)—im(X)

extreme situations, the spin-polarized uniform gas and a
spin-unpolarized two-electron system, demonstrating its uni-
versal applicability. Insertion of Eq28) into Eq.(17) yields
a entirely in terms of Kohn—Sham quantities.

For the spin-unpolarized uniform gasy is known

analytically>'>°

4 1/3
E) 5 (7%+6In2-3)

~0.7317 ({=0 uniform ga$. (29

In Appendix D, from Eq{(28), we derive an exact expression
a(¢), which we evaluate and plot in Fig. 4. We find
changes little withZ, and

61/3 7T2
——an (E+2 In(3)In(2) +dilog(4) + 2 dilog(3)

~0.9744 ({=1 uniform gas$, (30

where dilogk) = [’[dt In(t)/(1—t). Thus the overall polariza-
tion dependence of the on-top correlation hole is similar to
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that of exchange, as in EqL6) and as assumed by Perdew electron ion series in the limitZ—«, we have G

and Wan§’ in their parametrization of the exchange- =()3(47)23 vyielding y(0)~—1.3x10"3. Since this

correlation hole of the uniform gas. number should be system independent, we can conclude that
To demonstrate that the on-top hole is not exact in LSDihe gradient expansion for the on-top hole does not apply to

Burke et al* calculateda analytically for the two-electron poth these systems, or that there is numerical error in Eq.

Hooke’s atom in the hlgh-denSIty I|m|t, and found it differed (32) We suspect that the Hooke’s atom estimate is a reason-

from the uniform gas value ably accurate one, since a similar estimate for the noninter-
In[(2+v3)/8(2—v3)]5%?2 acting kinetic energy gives 90% of the correct Kirzhffits
a= gradient coefficient.

(311/6772/3)
The slowly varying gas has been treated within the ran-

~0.7713 (Hooke’s atom. (3D dom phase approximation by Langreth and Peréfeand the

h | h lculati ) di high-density limit of the results parametrized by Langreth
The result of that calculation was first reported in Ref. 49. In_ - Meohilo Eor =0, this yields(see Ref. 15

Appendices E and F, we derive that result in detail. We also
reported® the result of numerical calculations with A. Savin
of the on-top pair density in the two-electron ion series as

|Vn|?
nSEA(r,u=0)=n&"n(r),u=0]+ 75307 (39)

Z—, finding Undoing the coupling constant integration and comparing
a~0.799 (2—electron ion. (32 with Eq. (33, we find y(0)=(4m/3)Y3(36m2)~1.44
X 10~ 3, While this value is of the same order as our empiri-
E. Gradient expansion cal estimates, the sign is reversed, probably because the

simple Langreth—Mehl approximation does not capture the

From the arguments in Appendix C, we can derive thecomplexity of the hole found in Ref. 29. Thus we give no

form_of the I.‘SD approximation _to the system-averaged h()Ieprecise value fory({=0). The most direct route to this

and its leading gradient correction number appears to be either numerical evaluation of Zg).

(Nyca(u))[n,¢] for a gas with a density which is slowly varying in one di-
rection, or extraction from the hole found in Ref. 29.

1 .
=NJd3rn2(r>[g““'f(xrs<r>,z<r);u/rs<r))—1
F. “Abnormal” systems

+T(Ar(r), £(r);ulr ()| V() [2n®(r) +---]. Under the scaling of Eq(C3), the on-top hole ratio

(383 (nyc,(u=0))[n,Z]/(n) remains invariant, as does(rs).

. . . Thus, we can also think of Fig. 3 as a representation of the
This expression will be accurate for systems of slowly Vary'}\-dependence of the on-top hole density in a spin-

er:gndter?estygrraensd ;tr)]rdisnmalhr;(;(;ﬁltdet))(earg:g:] t;g:tfhrebz::;/ed unpolarized {=0) normal system: Just relabel the vertical
P 99 P 9 and horizontal axes g8\ (u=0))/(n) and\(rg), respec-

5 s |Vn|? tively.
Exca= | 07| Axc(Are)n™+ Cxc(Ars) —g3-+-+|, (34) In the noninteracting limit\=0, we have the Kohn—

Sham wave functionV, _o([n,{];r1,01,....FN,0N), Which
(see next sectignThe exchange limit is recovered by setting js 5 single Slater determinant of Kohn—Sham orbitals for a
A=0. Sincel'(Ars,{;0) vanishes in the —0, A—«, and  normal system. More generally;, _, could also be a linear
{—1 limits, we anticipate that it is small everywhere. combination of degenerate ground-state determinants for the
To evaluatel'(u=0), we would have to calculate the pamionianH, _,. For any finite system, we expect to find
on-top hole for a slowly varying electron gas, a calculatlonnonzero overlag ¥, _o|¥,), and then all\-dependencies

which is beyond the scope of this paper. However, we cam e an analytic perturbation or Taylor expansion, e.g.,
get some idea of its magnitude by comparing with the small

\ limit of the previous section. We write - .
(Nxea(U=0))[n, ()= 2 & (\(ry)'. (39
F(Arg,Siu=0)=Argy(H)+-- . (39 =0
Insertion of Eq.(33) into Eq. (17) then yields The coefficients; are functionals of(r) and of the shape of
LsD the electron densitg(r), but are invariant under the uniform
a=a>"-2y(0)G (36)  scalingn(r)— y®n(yr) and £(r)— ¢(yr). For exampleny
where andEy are purely of ordek°, while Nc,\ andEc , vary like
\ for small A (in the absence of a strict degeneracy for

_Jd¥r[¥(D1¥(0)]|Vn[?/n =0).

B fd3r(1-¢%n3 (37 These expectations may fail in an infinite system like the
uniform electron gas, wheré¥, _,|¥,)=0. For example,
the on-top hole ratio in the spin-unpolarized g&¥ is

Thus y({), a single universal function of, characterizes the
gradient expansion for. For the high-density Hooke’s

atom, we findG= (32 V657, yielding an empirical estimate n%e,(u=0) _ ltadrgt BNZTS In(\ry) fe . 4O
of y(0)=~—7.75<10 4. On the other hand, for the two- n 2 ‘
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The exchange hole has the expect@tiependence, and the 0.02 —
correlation hole again starts out like but the next term in 0.01 “efé’r‘,‘é’rlgg ______
the expansion is nonanalytic. In the opposite limit o, the 0 exchange-correlation - - - -
correlation hole density becomes of ordérin order to can- S
cel the exchange hole, in such a way tEat, ~\ In \ for 3 001
small\. Capturing this nonanalyticity requires summing the ~ 002
random phase approximati@RPA) or ring-diagrams, which 2003
properly account for the long-range part of the Coulomb in- § -0.04
teraction. & 00

Our model for the uniform gas on-top hole presented in uniform gas with r =3
Appendix A is analytic in\. Thus, the on-top hole ratio in 0.06 s
the uniform electron gas has essentially the same kind of -0.07
\-dependence as that of a finite normal system, making this 0.08
quantity more transferable from the uniform gas th&n, 0 2 4 6 8 10
itself. u

A system is normal or abnormal to the extent that itSkig, 5. Exchange-correlation holes in the spin-unpolarized uniform electron
system-averaged on-top hole ratioyc ,(u=0))[n,{]/(n) gas withr,=3, for differing coupling-constant strengths. Langescilla-
for each coupling constantis or is not close to its LSD or tions have been averaged away, following Ref. 0.
uniform-gas approximation, evaluated using the true ground-
state spin densities;(r) andn (r) for the system. In other

words, a normal system is described approximately by the  \ye now examine the degree of nonlocality in the PW91
re-labeled Fig. 3(or by its generalization tg+0). Abnor- g 15 | the first three columns of Table I, we tabulate the

mal systems typically arise in one of two wayd) If the o0 made by LSD relative to PW91, ie.E'EP

Kohn—Sham X=0) system has a ground state which is a_ gPWIly EPWL ag 5 percentage. Looking across any row

linear combingtion_of several_determinar(nsg., an atomic e see that indeed this error is largest for exchange and least
triplet state withS=1 andM=0), then the LSD on-top o | coupling strength. Looking down any column, we
hole ratio can be wrong even at the=0 or exact exchange 554 see that this effect becomes less significant as we ap-

fait 63 —
limit.> (2) If the Kohn—Sham on =0 system has a nearly roach the high-density limitin which exchange dominates
degenerate ground state, then the analytic expansion of Eeorrelatior).

(39) can become irregular, with leading coefficierjts|

much greater than unity. Examples of abnormal systems will

be found in Refs. 35, 63, and 64. The breaking of symmetry

which can partially rescue semilocal descriptions of suchV- ON-TOP HOLE IN OTHER APPROXIMATIONS

systems is discussed in Ref. 64. We believe that a correct on-top hole density is an in-

gredient of every successful first-principles density func-
tional approximation, and that conversely an incorrect on-top
In this section, we examine the concept of nonlocality, indensity indicates the need for further refinement of an ap-
the sense of how much error LSD makes. We have seeproximation. Here we discuss the on-top hole density in
above that LSD is most accurate neas 0, and least accu- three approximations which attempt to go beyond LSD or
rate at largau. Thus the deeper the hole is at the origin, andGGA. For systems with fixedintege) electron number,
therefore, from the sum rule, the shorter its ranges,inhe  these approximations also satisfy the correct sum rule on the
better approximated it should be in LSD. We may test thisexchange-correlation hold,d3r'nyc(r,r')=—1. The self-
idea by examining the holes and corresponding energies dfiteraction correction comes clos&sto satisfying the gen-
three different coupling constants:=0 (exchangg \=1 eralization of this sum rule to systems with fluctuatimgn-
(full coupling strength, and averaged ovexr (as in the actual integer on averageslectron number, and thus can mimic the
Exc). In Fig. 5, we plot these three holes for the spin-derivative discontinuit}?®® of the exact functional.
unpolarized uniform electron ¢¥sat r¢=3, a typical
valence-electron density. Since the on-top correlation hole is
negative, the Shallowe_st of these holes is the eXChange hOI‘FABLE I. Errors in LSD energies, relative to PW91, for several atd#s
followed by the coupling-constant averaged hole, and the

G. Locality of the energy

deepest is the full coupling-strength hole. These qualitative Atom AEy AEyc AExca-1 AEc
features will be shared by the system-averaged holes of most 13 —7 s 236
inhomogeneous systems. Thus we expect the exchange en- ¢ 13 6 _3 145
ergy to be the least local, and the full coupling-strength en- ;i -13 -7 -5 162
ergy the most local, of the thre€l'his argument, which pro- N -10 =7 =5 114
vides the basis for our hybrid wofk,is valid at typical core Ne -9 —6 -4 94
and valence electron densities. It begins to fail for an elec- '2: :2 :i :g gi
tron gas of extremely low density, where the exchange- e _5 _4 _3 64

correlation hole develops a strong positive bump at large
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A. Weighted-density approximation

Another popular approximation in density functional
theory is the weighted density approximatiGiyDA)®":68

el u)—1], (41

N (r,r+u)=n(r+u)[g"""(n(r);
where the weighted density(r) is chosen to satisfy the sum
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rules on the exchange and correlation holes, and is a nonlocal

functional of n(r). At u=0, to the extent thah(r) differs
from n(r) [andn(r) is not so large that correlation may be
neglected, WDA is apt to be less accurate than LSD, even in
a spin-unpolarized system.

We note that a recent variation, which does WDA for
only exchang® and includes a correction to accommodate
the uniform gas, does reproduce the LSD on-top hole.

The on-top hole of the average density approximation

(ADA)® is incorrect in many of the limits in which that of
LSD is correct.

B. Self-interaction correction

The self-interaction correctio(BIC) to LSD of Perdew

and Zungef® is
(f d3 JdS ’

fd i (1) exa(n; ,(r), 0>]

occup
ESIC LSD
i,o

)

Ni,o (NN (r
S 21

(42)
wheren; ,(r)=|#; ,(r)|? is the contribution to the density
from orbitali, o. The corresponding ansatz for the hole is

NRG(r,r +u)=nyxg(n(r),n (r);u)

Ni,o(r)

() LMo

(ni,a(r)!O;u)]' (43)

At zero separation(=0), the SIC hole density and cusp
reduce to those of LSD, sincayg(n;,,0;u)=—n; ,(r)
+0(u?).

occup.

-2

I,o

+ i

C. Exact exchange mixing

APPENDIX A: INTERPOLATION FORMULA FOR
UNIFORM ELECTRON GAS

Consider a spin-unpolarized € 0) electron gas of uni-
m densityn=3/(47-rr§). The on-top hole density is

nXC,)\(rir):n[g)\(rS!uzo)_1]1 (Al)

where g, (rs,u) is the pair distribution function. From the
scaling argument of Appendix @3, (rs,0)=0,-1(Arg0).

Yasuhara made an approximate summation of ladder dia-
grams, and founid

for

2
1«

C21%2k\ry)

(A2)

wherex=(4/3m)(97/4)*® andl , is a modified Bessel func-
tion of order 1.(This calculation has recently been refirféx.
The low-density (s—<) limit of Eq. (A2) can be deduced
from the asymptotic behavior of the modified Bessel func-
tion [see Eq(9.7.1) of Ref. 73, yielding Dr2%e~A\s, where
D=27k3=32/37=3.3953 andA=4«=3.2581. Its high-
density limit is (1— arg)/2, wherea = (4/mv3)*3=0.6634.
An accurate closed-form representation of E&R) for all r

is

(Korg)!
||(|+1)'

s

i=0

Yas S, O) |:

Ir=1(rs0)=D[(y+19)¥+ gle AT, (A3)
where B=exp@A\/y)/(2D)— y*? makesg,_1(rs=0,0)= 3

andy=5.8648(and3=379.12) recovers the Yasuhara value
for a

Geldart® and later Kimbalfi? evaluated the exact high-
density limit forg, - 1(0), also finding (- arg)/2, but with
a given by Eq.(29). We can modify the parametegsand 8
of Eqg. (A3) to achieve this limit, with the resuly=4.7125

Becké? has shown that mixing some exact exchange?NdB=163.44. The coupling-constant average is

with GGA in the form

EXE=a(Ex—EX*H+ERS, (44)

with a~0.25, can lead to significant improvement of atomi-

zation energies. It has recently been shown that such exact

exchange mixing can be derived without empirical input
from very general consideratiofi$and the value of the mix-

ing parameter explained in terms of perturbation theory

results®* The accompanying hole is

NTX(r,r+u)=a[ny(r,r+u)—nSeAr,r+u)]

GGA

+nge (r,r+u). (45)

Since LSD and GGA give the exact on-top exchange hole fo

. 1
g(r310): fO d)\g)\:l()\rsvo)

drsgx 1(rs,0)

-,
Azr [F(AVY) —F(Ay+r9] (Ad)
where
F(2)=e q(z+1)(B+24IA3) +22(Z>+ 4z+ 12)/ A®].

(A5)

r We believe that our interpolation between the low- and

normal systems, in these cases the mixing functional reprdiigh-density ¢=0.7317) limits provides the most accurate

duces the LSD on-top hole.
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TABLE II. On-top pair distribution fun(y:t|org)‘:1(rs,0) for _the uniform ‘Px[n,é](rl,o'l...,fN ,oN)
electron gas. Comparison of Yasuhara's formjitg. (A2)] with two ver-

sions of Eq(A3), and with the results of a Quantum Monte Carlo simulation s SN2y n, [1,01,..., YN, O
(Ref. 74. Also shown are the results of the effective potential expansion 4 )\[ §](y boL YN N)
(EPX) of Ref. 75. =W ,\[n,.0,](r1,01,.../n,0N) (CY
Eq. (A3) Eq. (A3) where
rs Eq.(A2) «=0.6634 =0.7317 QMC EPX
n(r)=y>n(yr), (C2)
1 0.266 0.265 0.250 0272 027 ) )
3 0.088 0.084 0.074 0092 0085 Isthe scaled density, anfl(r)=¢(yr). The Levy equality
5 0.033 0.031 0.026 0.023 0.027 of Eqg. (C1) asserts that the scaled wave function is associ-
10 0.004 0.003 0.003 0.002 - ated with the scaled density only if the coupling constant is
also scaled. Extracting the hole from the wave function via
Eq. (4) yields
3
gas. These values agree with the results of quantum Monte (nxea ()N, &=y nxea(yw)n.¢]
ﬁ:;alrlo simulationg; within the accuracy of the lattgTable =(Nxea(W)IN,, ¢, 1. (C3)

The important point to note here is that, under coordinate

scaling of the wave function, not only is the density scaled,
APPENDIX B: NUMERICAL SOLUTION OF HOOKE'S but so too is the coupling constant.
ATOM We next use the exact form of E¢C3) to deduce the

form of the gradient expansion for the hole. The error made

To better understand the accuracy of the LSD on-tomyy a local approximation may be systematically estimated by

hole, we performed essentially exact calculations on a simplgeating the local approximation as the zeroth order term in a
model system, the Hooke’s atom, which consists of two elecTaylor series in gradients of the density. This is the gradient
trons repelling each other via a Coulomb repulsion, butexpansion. The derivation of the gradient expansion for a
bound to an attractive center by a simple oscillator potentiayantity is simple in principle: Start with a uniform electron
of frequencyw. For certain discrete values af, the exact gas, apply an external potentidi(r) that is both weak and
wave function may be written analyticalf§.”” Here, by ex-  sjowly varying, evaluate the quantity to second order and the
panding the wave function in powers of the separation begensity to first order insv, then eliminatesv to find the
tween the electron€, we solve the problem numerically by guantity as a functional of the density. What often compli-
exact diagonalization for any value @§=10 % beyond cates this derivation in practice is that the unperturbed sys-
which numerical instability causes our solution to fail on atem is an interacting electron gas, with a long rangei) 1/
machine with 32-digit accuracy. The advantage of this modejnteraction. Here, we do not directly calculate the gradient
over the two-electron Coulombic ion series is that there is N@xpansion, but take a different approach, using scaling argu-
cusp in the density at the center, where the rapid variation ifnents to find the exact form for the gradient expansion.
the density can cause LSD to become less accurate, as in Fig. |n an electron gas of slowly varying density, we can
1. Figures 2 and 3 of the first paper in Ref. 64 show that, inexpand this hole in powers of the density gradient, and the
all regions of the Hooke’s atom in which the on-top hole leading correction to LSD is proportional t&n|2 by sym-
density is significant, the LSD on-top hole is an excellentmetry_ The scaling equality of EGC3) constrains this gra-

approximation. These results for the Hooke’s atom systemgjent expansion for the on-top hole to be of the form of Eq.
averaged on-top hole are presented in Fig. 3, and compargds). The on-top hole density is

with uniform gas values. The LSD hole is an even better

approximation in this case than for Coulombic atoms, as cafiMxca(U=0))[n,{]
be seen by the proximity of the curves. 1
—+ 5 | gt 2 -1

APPENDIX C: LEVY SCALING AND THE GRADIENT +T(Arg(r),(n)|Vn(r)|2n83r)+---]. (Ca)

EXPANSION _ , _ o _
The first term here is the uniform gas contribution, discussed

The scaling properties of the Kohn—Shan=0) wave  at length above. The next term must be very small. We esti-
function have been used to derive the forms for the gradieniate the size of the gradient correction in the text.
expansions of the noninteracting kinetic and exchange
energies? Here we shall use Levy’s scaling relation for the
interacting wave function to do the same for the exchange-
correlation on-top hole.

An external p?otentiavext(r) acting on a reaN-electron APPENDIX D: POLARIZATION DEPENDENCE IN

. : o HIGH-DENSITY UNIFORM GAS
system produces a densityfr) and spin-polarizatior{(r).

Associated witm(r) and{(r) for each coupling constant Applying Eq. (28) to the case of a uniform gas, the
(see aboveis a wave functiorV,[n,](r1,01,.... N, ON)- Kohn-Sham orbitals are plane waves;(r)=exp(p;
For anyy>0, consider the uniform scaling -r)/\/V, whereV is the volume of the system, am is the
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momentum of theéth state, and; = p; /2 Transforming to a  This change is included iP5y, but cancelled out oP™)
[(d®)] by the change in the external potential. Thus
(2m?)’

continuous basis set, so tha{— Vf and using the

Fourier transform of the Coulomb potential, we find: PO(r,r)=PEo(r.r)—Pendr.r)
d3k d3p
PO (u=0)=—4 —3f p<ke; 53 =4R ¢} (1122 ciydilr) ¢y(r), (E7)
(2m) Ip+k|=ke (2m) i#0
W j#0
dp’ 4 i.e., the effect of keeping the density constant is to eliminate
X /P <k>F¢ (2m)3 K3(KZ+(p+p')-k) all single-particle e_xcitations from.the sum. This is precisely
[P +kI=ke,| the result of applying Eq(28) to this system.
(DY)
This simplifies to APPENDIX F: HIGH-DENSITY HOOKE'S ATOM
kE ® While Eq.(28) can be evaluated for any normal density
PY(u=0)=— 87 fo dallg;(1+)Y3,(1- "7, by finding the Kohn—Sham potential, orbitals, and energies,

(D2) and performing the sums and integrals, we show here that the
sum can be performed analytically for the high-density limit

where | (g;x,y) is a dimensionless function given by Eq. of Hooke’s atom, where the density is simply a Gaussian.

(15 of Ref. 80. The denominator in E¢L7) is easier, lead- The results of this Appendix confirm the initial slope of the

ing to k2(1— £?)(97/4)Y3(187%), yielding dashed curve in Fig. 3, and provide a detailed derivation for
(9/475)23 the conclusions of Ref. 49. We first calcul&®g),, as even
a())= 17 f dql(g;(1+)¥3(1- 0. in this simple system, Eq28) produces a three-dimensional

sum. We use center-of-mags=(r,+r,)/2 and relativeu
=r,—r, coordinates, for which the orbitals are denoted
®,(R) and ¢;(u), respectively. In the center-of-mass mo-
tion, the orbitals are those of a three-dimensional oscillator
of frequencyw and mass 2, while the relative motion has the

To illustrate the above results in a simpler fashion, weSame frequency but magsThen
rederive them for a spin-unpolarized two-electron system us- ,
ing Rayleigh—Schminger perturbation theory. Turning on PCou(R.u)=4 Re(I)O(R)¢0(u)%‘, 5P 3(R) ¢j(u)

(D3)

APPENDIX E: HIGH-DENSITY LIMIT OF TWO-
ELECTRON SYSTEMS

the interelectronic Coulomb repulsion as a perturbation on (F1)
the Kohn—Sham wave function yields
W(r,r")=gho(r) gho(r') + NP (r,r')+ (ED) where
r,r')=do(r)do(r r,r
3 5 Pi—o(R)j_o(u) DT (R)#]" (U)
where c;=—[ d°R| d°u .
U(€J+ Ej_eJZO_ejZO)

(F2)

By orthogonality, c; vanishes, except fod=0, j=(j,!
=0,m=0), yielding a very simple expression

1
— |0
Bo(r) do(r" ) (1) pF(r") 2 AR > .
=f dgrf d3r’ O|r—r?| o _6__'6_ . (B3 PEou(R,0)= 4CI>0(R)¢0(O)JZI p— #;(0),
( 0 i j) (FS)

where the sum is only over the spherically symmetric eigen-
states of the relative motion. These states can be mapped to

the odd eigenstates of the one-dimensional harmonic oscilla-
p) *2 "o _ - J ] i -
Pcau(rr)=4 Re‘ 0 (r)zj: Cij i(r) bi(r) . (E4) tor, given in terms of the odd Hermite polynomials. It is a
textbook exercise to show

\If<1><r.r'>=iEj’cij¢i<r)¢j<r'>, (E2)

with the prime on the sum indicating exclusion of tt@0)
value, and <
J

0

Insertion of this form into the definition of the pair density
produces

We denote this result bp2) . as it is not the correct adia-

batic connection formula. Turning on the Coulomb repulsion S\ (=Dl 2 Fa
alone causes a change in density, which also alters the on-top u - 201 \m(2j+1)! U_o (F4)
hole, via Eq.(26). The density change is easily shown to be q
an
NGou(r)=4Re 2, Ciod§ (N i(r), (E5) (-1)iJa2j 0!
$1(0)60(0)= — 5 (F5)
O .

yielding a net change in the on-top pair density of
whereuy= y2/w. Sincee;=(2j +3/2)w, and using the Tay-

Pend I.1)=n(r)ngoy(r). (E®)  lor expansion
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P Gt S D S LD I (F6)
x(1+\/ X)) =194l
we find
2l0g2)w
Coul(r r)——Td)o(r). (F7)
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~ o0 X
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whereH; is the Hermite polynomial of degree Using the
generating function for Hermite polynomials, we find
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~ 2i—1_

bi: — m Ci. (F12)
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i CioCi :—Z—wln 16(2—v3)
Cowhrg S 2L irnr 2+v3
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311
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