Rationale for mixing exact exchange with density functional approximations
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Density functional approximations for the exchange-correlation erief§} of an electronic system

are often improved by admixing some exact exchafge E,.~EX "+ (1/n)(E,—E2™). This
procedure is justified when the error B arises from thex=0 or exchange end of the
coupling-constant integrdly d\ Eqry'. We argue that the optimum integeris approximately the
lowest order of Gding—Levy perturbation theory which provides a realistic description of the
coupling-constant dependenkg;, in the range &\<1, whencen~4 for atomization energies of
typical molecules. We also propose a continuous generalization af an index of correlation
strength, and a possible mixing of second-order perturbation theory with the generalized gradient

approximation. ©1996 American Institute of Physids$§0021-960606)01846-9

Kohn—Sham density functional thedry typically (Exca—0tExca=1)/2, whereE,,,_o=E, is the exchange en-
makes a local or semilocal approximation for the exchangeergy of the Kohn—Sham orbitals. Be€keasoned that local
correlation energy functiond,p;,p,] of the electron spin or semilocal density functionals are more accurate af
densities, even though it also provides orbitals from which gwhere the exchange-correlation hole is deeper and thus
Fock integral or “exact” exchange energy may be con-more localized around its electrdhthan atA=0. His half-
structed. Given any pair of spin densitipg(r) and p,(r),  and-half hybrid*
there is usually a unique Slater determindrg of Kohn— 1
Sham orbitals which yields those densities and mjnin‘ﬁies EQZb= = (B + EEchAzl)a ®)
the expectation value of the kinetic energy operatprand 2 ’
thus an exact Kohn-Sham exchange energyvhereE, is the exact exchange energy and DFA is a density
Ex=(Vo|Ved Wo) = (€°72)[d%rd® " p(r)p(r')/[r'—r|, where  functional approximation, uses the local spin dengit$D)

Vee is the electron—electron repulsion operator andapproximation forESr ... The underlying ideas about=0
p=p;+p, . Hybrid$~® which incorporate some of this exact and\=1 can also be implemented in other way®
exchange provide a simple and accurate description of the Becké later proposed the three-parameter hybrid
atomization energies, bond lengths, and vibration frequen-

cies of most molecule¥ " The current popularity of hy- ER=Exe "+ ao(Ex— E™) +ax EX* - E;*)

brids in quantum chemistry demands a simple rationale for +ay(EGCA—ELSP), )
how much exact exchange should be included for a particular

. . . GGA_
system or property. Such a rationale might motivate furthetvhere Exc™=

fd3rf(pT 0,,Vp;,Vp)) is a generalized gradi-

improvements in calculational methods. ent approximation, an@,c"=fd’rf (p;,p,,0,0 is its LSD
Becké& showed that the proper starting point for hybrid Piece. The parameteeg=0.20,a,=0.72, anda,=0.81 were
theory is the adiabatic connection formdfa? determined by fitting to a data set of measured atomization

energies. IFES®" and ES®* are correct for the uniform gas

_[* [as they were in Becke’s original B3PW8&T,2 but not!?°
Exe= | dAEjcy, @ .
0 ‘ in the popular B3LYR(Refs. 26, 30, 31, then the resulting
here hybrid of Eq.(4) is also correct in the uniform-gas limit. A
w

recent(B1) simplificatior??° setsa,=1—a, anda.=1, i.e.,

R 2 ! hyb__ —DFA DFA
EXC,)\:<\I’}\|Vee|\P)\>_ % f dng d3r! % (2) Exg :Exc +aO(Ex_ Ex )1 (5)

with a;=0.16 or 0.28(depending on the choice of GGA

is A" times the potential energy of exchange and correlatioriRef. 8§ and DFA=GGA. The errors in GGA atomization

for electron—electron interactione®|r—r’|, in a system energies are most severe for multiply-bonded molecules like

whose external potential,(r) is adjusted to hold the elec- N,; for evidence that these errors arise principally from the

tron densityp(r) fixed at its physicah=1 value. ¥, is the = A—0 or exchange limit, see Ref. 25.

ground-state wave function of this system. A0, the Previous worR#1%-1establishes the usefulness of the

Kohn—Sham noninteracting system is recovered. From thaybrid of Eq.(5), but does not provide a qualitative physical

Hellmann—Feynman theorem, the coupling-constant integragéxplanation for this form or for the empirical value of the

of Eq. (1) incorporates the kinetic energy of correlation. A parametera,. The aim of this work is to provide such an

simple two-point approximation to this integral is explanation. We will show thaay~1/4 is to be expected for
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the atomization energies of most molecules, but also that Then=2 case might apply when second-order perturba-
larger values ofa; may be more appropriate for total ener- tion theory is adequate. Equati¢n) becomes
gies of atoms and molecules, and smaller values for atomi-
zation energies of molecules with nearly degenerate ground
states of the unperturbéd=0) problem.

Every density functional approximatide; "[p; ,p;] has

a coupling-constant decompositi&? like Eq. (1) [see Eq.  Which reduces to the half-and-half hyBtit of Eq. (3) when
(13)], which permits us to definEP™ = EP™A_ andEP™  Exx is also a straight line. An unsatisfactory and artificial

1
ERAn=2)=E"+ 5 (B EX™), (10)

= EDFA — ED™A. We propose a simple model for the hybrid feature of then=2 model is that, althouglERY} matches
coupling-constant dependence, Eson at A=1, the f|rst dgrlvatlve_ls not matchgd. In re_allty,
b OEA OEA A=1 is not a special point, but simply one which falls in the
Exea(n)=Exx+ (Ex—Ex™) (1)1, (6)  largea range where density functional approximations work
best.

wheren=1is an integer to be determined Equgﬁ@ re The n=4 case is exemplified by typical molecules like

duces to the exadf, atA=0, as it should, and t@,," at or the 32 in the G1 data set, for which fourth-order/ Io-

DFA
Plesset perturbation theoryMP4) yields atomization

nearA=1, whereE, )" is most trustworthy. The integer
controls how rapidly the correction to DFA vanishes asenergie§8 with a small mean absolute error of 2.6 kcal/mol.
For this case,

A—1. Then

1 1
ENvb— f dNEWP =gPFAL Z (B, — EPFA). 7) 1
€7 Jo BB (BTE ER(n=4)=E"+ 7 (BB, (1)
We now argue that the optimum integeishould be the b OFA -
lowest order of perturbation theory which provides a realistidVioreover, E{3 matchesE,¢" in value, slope, and second
description of the shape ardependence of the exa, , derivative at\=1. Equation(11) constitutes our rationale for
) . ’ the hybrid of Eq.(5) and our explanation of the value of the
Exca~€%(CotCih+---+CngN""7) (0sA<1). (8)  semiempirical parameter,=0.16 or 0.2&
This choice maximizes the similarity &"™° to EPFA near Finally, the casen>4 arises when there is a degenerate
Y Mhea xe or nearly-degenerate ground-state of the unpertuthed)

A=1, while ensuring that no unnecessary powers\ adre o
introduced into Eq(6). For example, if the curve &, vs problem, as exemplified to some extent by the molecye O
xC (Ref. 13 or by “stretched” H,,243°

\ is constan{n=1), then the best correction B2, in Eq.
(6) is a constant shift; if this curve is a straight life=2),
then the best correction is a straight line; if this curve is a

cubic (n=4), then the best correction is a cubic, etc. In other|n this caseE™? of Eq. (6) has a very negative=—x) slope
words, we assume thdr{ and ER} can each be fitted 4t \=0, so the full density functional approximation is re-
accurately by a polynomial like E8), with an indexn no  ¢gyered, as expected on the basis of arguniehts°-*hat
higher than that needed for an accurate representation of the|gcal or semilocal functional for the exchange energy in-
exactE,) . corporates an estimate of “static correlation,” while the cor-

The appropriate zero-order problem is the Kohn—Shamesponding approximation for the correlation energy models
noninteracting Hamiltonian, and the perturbation is CON-‘dynamic correlation.” The geometry and vibration fre-
structed to hold the density fixéd->* However, we expect quencies of 0zoné0.) are better describdby GGA alone
that in most cases can be estimated by examining the con-than by a Becke hybrid with 20% or 25% of exact exchange.
vergence of the traditional Mier—Plesset perturbation ex- An ideal hybrid would be sophisticated enough to opti-
pansion, in which the zero-order problem is the Hartree—jze n for each system and property, but the accuracy of
Fock Hamiltonian. B ~ MP4 (Ref. 38 for most molecules suggests=4 as the best

Then=1 case is exemplified by Rt", a strongly posi-  single choice. Table | shows the atomization energies of 19
tive closed-shell ion. AlthougE}{} of Eq (6) will not match  molecules constructed from this rationalized valugptis-

EMY(n>4)~EXA (12)

Exa for any A, n=1 is clearly the best choice for the ing as a density functional the nonempirical GGA of Perdew
exchange-dominated ca¥eEquation(7) becomes and Wang(PW921).2"28 Since Rayleigh—Schdinger pertur-
E%b(n: 1)=E,+EDFA, 9) bation theory is size-consistettthis hybrid could also work

for insulating solids.
which incorporates 100% of exact exchange plus GGA cor-  Figure 1 displays tha-dependence cE'X‘}:’R(n=4) from
relation. Equatior(9) has been tested for molecular atomiza-Eq. (6), in comparison wittEX: .. What is actually shown is
tion energies by Clementi and Chakravoitythe results are —AE )\ =Exca(N2)—2E,,\(N), appropriate to the atomiza-

superior to Hartree—Fock values, but inferior to values caltion energyAE of N,. EECff has been evaluated from the

culated from GGA exchange and correlation without exactelationshig?3248

exchange. Clearly, molecular atomization energies are not g

exchange dominated. Equati¢® has also been applied to _ 92

insulating solids’’ Exealpy p1]= gy INBdPiaspiall (13
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TABLE I. Atomization energies of molecules, in kcal/md eV=23.06 tion theory. Furthermore, onaeis chosen, Eq(7) requires

kcal/mol). Ex: has been evaluated on LSD densities at experimental geom: ;
nly ex Xxchan n A exchange-correlation ener-
etries (Refs. 42, 43 Nonspherical densities and Kohn—Sham potentials0 y exact exchange a d GGA excha ge-correlation ene

have been used for open-shell atofRef. 44. The calculations are per- gies, just as Iin EQ(S)- ) ) )
formed with a modified version of theabPac program(Ref. 45; for details In a more speculat|ve vein, we propose a continuous
of the calculation, see Ref. 25. The experimental valued\f6r(with zero generalization of the parametarof Eq. (6) as an index of

point vibration removedare taken from Refs. 38 and 46. Hyb denotes the « ; T -
n=4 hybrid of exact exchange with the PW91 density functional. UHF is correlation Strength’ for other definitions, see Refs. 47

self-consistent unrestricted Hartree—Fock, for comparison. and 51. This indexn would be determined by fitting the
left-hand side of

System AEYUHF  AELSD AEPWOL  AEME AESP h
dER/ ANy —o=dER /AN [y—o— (N— 1) (Ex—EX™)

H, 84 113 105 105 109 (14)
LiH 33 60 53 52 58 _ _
CH, 328 462 422 419 419 to the exactdE,.,/d\|,_, given by second-order density
NH, 201 337 303 296 297 functional theory perturbation theofy.>* This value ofn
OH 68 124 111 107 107 predicts the optimum amount of exact exchange to be ad-
:fzo 13? fgg ﬁ’g fgg ﬁ’f mixed with a density functional approximation, and might
Li, 3 23 20 19 Py also predict the convergence of the perturbation expansion.
LiF 89 153 137 130 139 [If the n predicted by Eq(14) were =<2, we could drop the
CH, 294 460 416 405 405 density functional contribution altogether, and simply use
CH, 428 632 574 565 563 gsecond-order perturbation thedriXote thatn can be defined
ggN f;i ggg gg zéé gég either for a systenfe.g., an atom or molecul@singE,., in
N, 115 267 242 295 2og  EQ.(14) ora proces$e.g.., atomization of a molecylessing
NO 53 199 171 152 153 the energy changaE,., in Eq. (14). We are currently test-
0, 33 175 144 124 121 ing hybrids of second-order perturbation theory with GGA.
Fa —20 79 55 36 39 Proper implementation may require a nonempirical GGA
EZI ‘11% 1;‘5 1;2 1503 15187 which has a perturbation expansion in powers\ofbout
mean abs. error 73.2 32.3 8.4 31 - A=0 for a finite system, unlike LSD or PW91. We have

recently developed such a GBAWithin this GGA, the de-
rivative on the right-hand side of E¢l4) is given by twice
Eq. (9) of Ref. 52.

where p,.,(r) is the uniformly-scaled spin densiey’p,(ar) This work was supported by the National Science Foun-

—y1 hyb ;
anda=\ . The shape of the curve AEy, is smooth and dation under Grant No. DMR 95-21353, and in part by the

plausible. .
To contrast the hybrid presented here from those of RefsPeUtSChe Forschungsgemeinschaft.

49 and 50, we note that the two-legged hybrid of Ref. 49 and

the[1/1]-Padeof Ref. 50 estimate the curvature of the exact 1w, kohn and L. J. Sham, Phys. RelA0, A1133 (1965.
A-dependence using GGA results naarl, while the[2/2]- 2R. M. Dreizler and E. K. U. Gros$)ensity Functional TheorySpringer,
Padehybrid of Ref. 50 inputs yet another piece of informa- ,Berlin, 1990.

. - - R. G. Parr and W. YandDensity Functional Theory of Atoms and Mol-
tion, the exact initial slop@ E,.,/d\|,_o from perturbation ecules(Oxford, New York, 1989

theory. In the present work, our single parametés deter- 43 k. percus, Int. J. Quantum Chef8, 89 (1978.
mined only from knowledge of the convergence of perturba-°M. Levy, Proc. Natl. Acad. Sci. USA6, 6062(1979.
6A. D. Becke, J. Chem. Phy§8, 1372(1993.
’A. D. Becke, J. Chem. Phy88, 5648(1993.
8A. D. Becke, J. Chem. Phy404, 1040(1996.
9A. Gorling and M. Levy (unpublishedl

S50 T ] 10y, Barone, Chem. Phys. Le226, 392 (1994).
= \ N, ] 11C. W. Bauschlicher, Chem. Phys. Le#46, 40 (1995.
g ol ] 123, Baker, J. Andzelm, M. Muir, and P. R. Taylor, Chem. Phys. 1287,
5 ] ] 53 (1995.
= ; hyb ] 183D, J. Tozer, J. Chem. Phy$04, 4166(1996.
S -50¢ . R. Neumann and N. C. Handy, Chem. Phys. L282, 19 (1996.
~= A : 153, M. L. Martin, J. El-Yazal, and J.-P. Francois, Chem. Phys. D&, 9
2 3 1 (1996.
ﬂ —100 - PW9l 7] 18A. C. Scheiner, J. Baker, and J. W. Andzelm, J. Comput. CHgmmbe
| [ ) published.
Do J) S T DU DU M M. D. Hack, R. G. A. R. Maclagan, and G. E. Scuseria, J. Chem. Phys.

104, 6628(1996.
0.0 0.2 04 06 0.8 1.0 8D, C. Langreth and J. P. Perdew, Solid State Commiin1425(1975.
A 19D, C. Langreth and J. P. Perdew, Phys. Revi332884(1977).
200, Gunnarsson and B. I. Lundqvist, Phys. Revi® 4274(1976.
FIG. 1. Dependence d,., of Eq. (1) upon coupling constart in the 21K, Burke, M. Ernzerhof, and J. P. Perdéunpublishedl
PW91-GGA density functional approximation amet4 hybrid (hyb) of Eq. 2M. Levy, N. H. March, and N. C. Handy, J. Chem. Phy€4, 1989
(6). What is actually shown is-AE,,=E\(N2)—2E,.,\(N), appropriate (1996.
for the atomization energgE of N,. K. Burke, J. P. Perdew, and M. Levy, Phys. Rev53 R2915(1996.

J. Chem. Phys., Vol. 105, No. 22, 8 December 1996

Downloaded-20-Dec-2002-t0-128.6.71.63.~Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/jcpo/jcpcr.jsp



Perdew, Ernzerhof, and Burke: Mixing exact exchange with density functional approximations 9985

240. Gritsenko, R. van Leeuwen, and E. J. Baerends, Int. J. Quantum Cherf®R. Neumann, R. H. Nobes, and N. C. Handy, Mol. P18&.1 (1996.

S30 (to be publisheyl 413, C. Slater and K. H. Johnson, Phys. Re\s,B44(1972; M. Cook and
25M. Ernzerhof, J. P. Perdew, and K. Burke, Int. J. Quantum CHearbe M. Karplus, J. Phys. Chen®1, 31(1987); V. Tschinke and T. Ziegler, J.
published. Chem. Phys93, 8051(1990; J. P. Perdew, M. Ernzerhof, K. Burke, and
%A, D. Becke, Phys. Rev. 488, 3098(1988. A. Savin, Int. J. Quantum Chenfto be publishef
?7J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pedersom?p_ 3. DeFrees, B. A. Levi, S. K. Pollack, W. J. Hehre, J. S. Binkley, and
D. J. Singh, and C. Fiolhais, Phys. Rev4B, 6671(1992; 48, 4978(E) J. A. Pople, J. Am. Chem. Sot01, 4085(1979.
51993 _ 3K, P. Huber and G. Herzbertylolecular Spectra and Molecular Structure
J. P. Perdew, K. Burke, and Y. Wang, Phys. Reut®be publishey J. IV: Constants of Diatomic Moleculé¥an Nostrand Reinhold, New York,
P. Perdeyv, |rEIectro_n|c Structure qf Solids '9%dited by P. Ziesche and 1979.
H. Eschrig(Akademie Verlag, Berlin, 1991p. 11. 4FE. W. Kutzler and G. S. Painter, Phys. Rev. L&8, 1285(1987).

M. Ernzerhof, J. P. Perdew, and K. Burke,Density Functional Theory
edited by R. NalewajskiSpinger, Berlin, 1996

30GaussiaN 92DFT, M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W.
Gill, M. M. Wong, J. B. Forseman, B. G. Johnson, H. B. Schlegel, M. A. . ) .
Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Jayatilaka, P. J. Knowles, R. Ko_ba_yashl, G..J. Laming, A M. _Lee, P. E.
Binkley, C. Gonzales, R. L. Martin, D. J. Fox, D. J. DeFrees, J. Baker, J. Maslen, C. W. Murray, P. Palmieri, J. E. Rice, E. D. Simandiras, A. J.

J. P. Stewart, and J. A. Pople, Gaussian Inc., Pittsburgh, Pennsylvanigaft‘x‘eémﬁ's[;‘ SCU’Jécl)rr]l(:st.GJ.V-l\-lozTerzcks K. Raghavachari, and J. A. Pople

“Scappacs, The Cambridge Analytical Derivatives Package Issue 6.0 Cam-
bridge (1995 A suite for quantum chemistry programs developed by R.
D. Amos, I. L. Alberts, J. S. Andrews, S. M. Cowell, N. C. Handy, D.

1992.
3lC. Lee, W. Yang, and R. G. Parr, Phys. Rev3B 785(1988. J. Chem. Phys93, 2537(1990. S
32, Gorling and M. Levy, Phys. Rev. B7, 13 105(1993. “Tpeter FuldeElectron Correlations in Molecules and SolidSpringer,
3. Gorling and M. Levy, Phys. Rev. /&0, 196 (1994, Berlin, 1993.
343, vanov, R. Lopez-Boada, A. @ing, and M. Levy(unpublishedl “8M. Levy and J. P. Perdew, Phys. Rev.3, 2010(1985.
3. Linderberg and H. Schull, J. Mol. Spectrosca (1960. 49K, Burke, M. Ernzerhof, and J. P. Perdew, Chem. Phys. I(ttbe pub-
38E. Clementi and S. J. Chakravorty, J. Chem. Pi9.2591(1990. lished.
37A. Zupan and M. Causdnt. J. Quantum Chen6, 337 (1995. M. Ernzerhof, Chem. Phys. Lettto be publisheld
3J. A. Pople, M. Head-Gordon, D. J. Fox, K. Raghavachari, and L. A.5'P. Ziesche, Int. J. Quantum CheB#6, 363 (1995.

Curtiss, J. Chem. Phy80, 5622(1989. 523. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. L&itbe pub-
393, P. Perdew, A. Savin, and K. Burke, Phys. Re\51A 4531 (1995. lished.

J. Chem. Phys., Vol. 105, No. 22, 8 December 1996

Downloaded-20-Dec-2002-t0-128.6.71.63.~Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/jcpo/jcpcr.jsp



